Abstract
In this paper we present an algorithm that optimizes artificial neural networks using Differential Evolution. The evolutionary algorithm is applied according the conventional neuroevolution approach, i.e. to evolve the network weights instead of backpropagation or other optimization methods based on backpropagation. A batch system, similar to that one used in stochastic gradient descent, is adopted to reduce the computation time. Preliminary experimental results are very encouraging because we obtained good performance also in real classification dataset like MNIST, that are usually considered prohibitive for this kind of approach.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source code available at https://github.com/Gabriele91/DENN.
- 2.
- 3.
References
Bari, G.D.: Denn: Differential evolution for neural networks. Master thesis (2017)
Bengio, Y., Goodfellow, I.J., Courville, A.: Deep learning. Nature 521, 436–444 (2015)
Brest, J., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)
Cardamone, L., Loiacono, D., Lanzi, P.L.: Evolving competitive car controllers for racing games with neuroevolution. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1179–1186. ACM (2009)
Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, ICML 2008, pp. 160–167. ACM, New York (2008)
Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)
Das, S., Mullick, S.S., Suganthan, P.: Recent advances in differential evolution an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)
Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)
Donate, J.P., Li, X., Sánchez, G.G., de Miguel, A.S.: Time series forecasting by evolving artificial neural networks with genetic algorithms, differential evolution and estimation of distribution algorithm. Neural Comput. Appl. 22(1), 11–20 (2013)
Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learning. Evol. Intell. 1(1), 47–62 (2008)
Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401 (2014)
Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., Colmenarejo, S.G., Grefenstette, E., Ramalho, T., Agapiou, J., et al.: Hybrid computing using a neural network with dynamic external memory. Nature 538(7626), 471–476 (2016)
Hausknecht, M., Lehman, J., Miikkulainen, R., Stone, P.: A neuroevolution approach to general atari game playing. IEEE Trans. Comput. Intell. AI Games 6(4), 355–366 (2014)
Heidrich-Meisner, V., Igel, C.: Neuroevolution strategies for episodic reinforcement learning. J. Algorithms 64(4), 152–168 (2009)
Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A.R., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)
Igel, C.: Neuroevolution for reinforcement learning using evolution strategies. In: The 2003 Congress on Evolutionary Computation, 2003. CEC 2003, vol. 4, pp. 2588–2595 (2003)
Ilonen, J., Kamarainen, J.K., Lampinen, J.: Differential evolution training algorithm for feed-forward neural networks. Neural Process. Lett. 17(1), 93–105 (2003)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc. (2012)
Leema, N., Nehemiah, H.K., Kannan, A.: Neural network classifier optimization using differential evolution with global information and back propagation algorithm for clinical datasets. Appl. Soft Comput. 49, 834–844 (2016). http://www.sciencedirect.com/science/article/pii/S1568494616303866
Masters, T., Land, W.: A new training algorithm for the general regression neural network. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 1990–1994 (1997)
Mattiussi, C., Dürr, P., Floreano, D.: Center of mass encoding: a self-adaptive representation with adjustable redundancy for real-valued parameters. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1304–1311. ACM, New York (2007)
Miikkulainen, R.: Neuroevolution, pp. 716–720. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-30164-8_589
Morse, G., Stanley, K.O.: Simple evolutionary optimization can rival stochastic gradient descent in neural networks. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2016, pp. 477–484. ACM, New York (2016)
Piotrowski, A.P.: Differential evolution algorithms applied to neural network training suffer from stagnation. Appl. Soft Comput. 21, 382–406 (2014)
Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31306-0
Reed, S., de Freitas, N.: Neural programmer-interpreters. Technical report, arXiv:1511.06279 (2015). http://arxiv.org/abs/1511.06279
Santucci, V., Baioletti, M., Milani, A.: Algebraic differential evolution algorithm for the permutation flowshop scheduling problem with total flowtime criterion. IEEE Trans. Evol. Comput. 20(5), 682–694 (2016)
Schaffer, J.D., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: Proceedings of COGANN 1992: International Workshop on Combinations of Genetic Algorithms and Neural Networks, pp. 1–37 (1992)
Schraudolph, N.N., Belew, R.K.: Dynamic parameter encoding for genetic algorithms. Mach. Learn. 9(1), 9–21 (1992)
Tracolli, M.: Enhancing denn with adaboost and self adaptation. Master thesis (2017)
Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), vol. 2, pp. 1980–1987 (2004)
Wang, L., Zeng, Y., Chen, T.: Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 42(2), 855–863 (2015)
Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Baioletti, M., Di Bari, G., Poggioni, V., Tracolli, M. (2018). Can Differential Evolution Be an Efficient Engine to Optimize Neural Networks?. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds) Machine Learning, Optimization, and Big Data. MOD 2017. Lecture Notes in Computer Science(), vol 10710. Springer, Cham. https://doi.org/10.1007/978-3-319-72926-8_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-72926-8_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72925-1
Online ISBN: 978-3-319-72926-8
eBook Packages: Computer ScienceComputer Science (R0)