Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Tractability of (ki)-Coloring

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10743))

Included in the following conference series:

Abstract

In an undirected graph, a proper (ki)-coloring is an assignment of a set of k colors to each vertex such that any two adjacent vertices have at most i common colors. The (ki)-coloring problem is to compute the minimum number of colors required for a proper (ki)-coloring. This is a generalization of the classic graph coloring problem. Majumdar et al. [CALDAM 2017] studied this problem and showed that the decision version of the (ki)-coloring problem is fixed parameter tractable (FPT) with tree-width as the parameter. They asked if there exists an FPT algorithm with the size of the feedback vertex set (FVS) as the parameter without using tree-width machinery. We answer this in positive by giving a parameterized algorithm with the size of the FVS as the parameter. We also give a faster and simpler exact algorithm for \((k, k-1)\)-coloring, and make progress on the NP-completeness of specific cases of (ki)-coloring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Even though [12] claims a running time of \(O((^q_k)^{tw} n^{O(1)})\) for their algorithm, there is an additional factor of \(\left( {\begin{array}{c}q\\ k\end{array}}\right) \) that is omitted, presumably because \(\left( {\begin{array}{c}q\\ k\end{array}}\right) \) is treated as a constant.

References

  1. Méndez-Díaz, I., Zabala, P.: A generalization of the graph coloring problem. Investig. Oper. 8, 167–184 (1999)

    Google Scholar 

  2. Stahl, S.: \(n\)-tuple colorings and associated graphs. J. Comb. Theor. Ser. B 20(2), 185–203 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bollobás, B., Thomason, A.: Set colourings of graphs. Discrete Math. 25(1), 21–26 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Klostermeyer, W., Zhang, C.Q.: \(n\)-tuple coloring of planar graphs with large odd girth. Graphs Combinatorics 18(1), 119–132 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Šparl, P., Žerovnik, J.: A note on \(n\)-tuple colourings and circular colourings of planar graphs with large odd girth. Int. J. Comput. Math. 84(12), 1743–1746 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Irving, R.W.: NP-completeness of a family of graph-colouring problems. Discrete Appl. Math. 5(1), 111–117 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Marx, D.: Graph colouring problems and their applications in scheduling. Period. Polytech. Electr. Eng. 48(1–2), 11–16 (2004)

    Google Scholar 

  8. Beideman, C., Blocki, J.: Set families with low pairwise intersection. arXiv preprint arXiv:1404.4622 (2014)

  9. Brigham, R.C., Dutton, R.D.: Generalized \(k\)-tuple colorings of cycles and other graphs. J. Comb. Theor. Ser. B 32(1), 90–94 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonomo, F., Durán, G., Koch, I., Valencia-Pabon, M.: On the \((k, i)\)-coloring of cacti and complete graphs. In: Ars Combinatoria (2014)

    Google Scholar 

  11. Johnson, S.: A new upper bound for error-correcting codes. IRE Trans. Inf. Theor. 8(3), 203–207 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Majumdar, D., Neogi, R., Raman, V., Tale, P.: Exact and parameterized algorithms for \((k, i)\)-coloring. In: Third International Conference on Algorithms and Discrete Applied Mathematics, CALDAM 2017, India, pp. 281–293 (2017)

    Google Scholar 

  13. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13731-0_9

    Chapter  Google Scholar 

  14. Jansen, B.M., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)

    Article  MathSciNet  Google Scholar 

  15. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, Y.L., Austrin, P., Pitassi, T., Liu, D.: Inapproximability of treewidth, one-shot pebbling, and related layout problems. J. Artif. Intell. Res. 49(1), 569–600 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

    Book  MATH  Google Scholar 

  19. Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3(1), 23–28 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koivisto, M.: An \({O}^*(2^n)\) algorithm for graph coloring and other partitioning problems via inclusion-exclusion. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science. FOCS 2006, Washington, D.C., pp. 583–590. IEEE Computer Society (2006)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the anonymous reviewer for helpful comments, and pointing out a flaw in the proof of Theorem 12 in an earlier version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrahmanyam Kalyanasundaram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Joshi, S., Kalyanasundaram, S., Kare, A.S., Bhyravarapu, S. (2018). On the Tractability of (ki)-Coloring. In: Panda, B., Goswami, P. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2018. Lecture Notes in Computer Science(), vol 10743. Springer, Cham. https://doi.org/10.1007/978-3-319-74180-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74180-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74179-6

  • Online ISBN: 978-3-319-74180-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics