Abstract
The paper investigates some of the fundamental ideas of the context-free grammar theory, as they are applied to several extensions and subclasses of context-free grammars. For these grammar families, including multi-component grammars, tree-adjoining grammars, conjunctive grammars and Boolean grammars, a summary of the following properties is given: parse trees, language equations, closure under several operations, normal forms, parsing algorithms, representation in the FO(LFP) logic, representations by automata and by categorial grammars, homomorphic characterizations, hardest language theorems, pumping lemmata and other limitations, computational complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aizikowitz, T., Kaminski, M.: Conjunctive grammars and alternating pushdown automata. Acta Informatica 50(3), 175–197 (2013). https://doi.org/10.1007/978-3-540-69937-8_6
Aizikowitz, T., Kaminski, M.: LR(0) conjunctive grammars and deterministic synchronized alternating pushdown automata. J. Comput. Syst. Sci. 82(8), 1329–1359 (2016). https://doi.org/10.1016/j.jcss.2016.05.008
Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56, 3 (2009). https://doi.org/10.1145/1516512.1516518
Bader, C., Moura, A.: A generalization of Ogden’s lemma. J. ACM 29(2), 404–407 (1982). https://doi.org/10.1145/322307.322315
Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase structure grammars. Bull. Res. Counc. Israel 9F, 155–166 (1960)
Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase-structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung 14, 143–177 (1961)
Barash, M., Okhotin, A.: An extension of context-free grammars with one-sided context specifications. Inf. Comput. 237, 268–293 (2014). https://doi.org/10.1016/j.ic.2014.03.003
Barash, M., Okhotin, A.: Two-sided context specifications in formal grammars. Theoret. Comput. Sci. 591, 134–153 (2015). https://doi.org/10.1016/j.tcs.2015.05.004
Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 3–25. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45711-9_1
Blattner, M., Ginsburg, S.: Position-restricted grammar forms and grammars. Theoret. Comput. Sci. 17(1), 1–27 (1982). https://doi.org/10.1016/0304-3975(82)90128-1
Blum, N.: More on the power of chain rules in context-free grammars. Theoret. Comput. Sci. 27, 287–295 (1983). https://doi.org/10.1016/0304-3975(82)90122-0
Boasson, L., Nivat, M.: Le cylindre des langages linéaires. Math. Syst. Theory 11, 147–155 (1977). https://doi.org/10.1007/BF01768473
Boullier, P.: A cubic time extension of context-free grammars. Grammars 3(2–3), 111–131 (2000). https://doi.org/10.1023/A:1009907814595
von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in \(\log n\) space. North-Holland Math. Stud. 102, 1–19 (1985). https://doi.org/10.1016/S0304-0208(08)73072-X
Brent, R.P., Goldschlager, L.M.: A parallel algorithm for context-free parsing. Aust. Comput. Sci. Commun. 6(7), 7.1–7.10 (1984)
Buchholz, T., Kutrib, M.: On time computability of functions in one-way cellular automata. Acta Informatica 35(4), 329–352 (1998). https://doi.org/10.1007/s002360050123
Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory 2(3), 113–124 (1956). https://doi.org/10.1109/TIT.1956.1056813
Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages, In: Braffort, H. (ed.) Computer Programming and Formal Systems, pp. 118–161. North-Holland, Amsterdam (1963). https://doi.org/10.1016/S0049-237X(08)72023-8
Chytil, M.P.: Kins of context-free languages. In: Gruska, J., Rovan, B., Wiedermann, J. (eds.) MFCS 1986. LNCS, vol. 233, pp. 44–58. Springer, Heidelberg (1986). https://doi.org/10.1007/BFb0016233
Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently learn context-freelanguages. J. Mach. Learn. Res. 11, 2707–2744 (2010). http://www.jmlr.org/papers/v11/clark10a.html
Cook, S.A.: Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space. In: 11th Annual ACM Symposium on Theory of Computing, (STOC 1979, 30 April–2 May 1979, Atlanta, Georgia, USA), pp. 338–345 (1979). https://doi.org/10.1145/800135.804426
Crespi Reghizzi, S., San Pietro, P.: The missing case in Chomsky-Schützenberger theorem. In: Dediu, A.-H., JanouÅ¡ek, J., MartÃn-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 345–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9_27
Droste, M., Vogler, H.: The Chomsky-Schützenberger theorem for quantitative context-free languages. Int. J. Found. Comput. Sci. 25(8), 955–970 (2014). https://doi.org/10.1142/S0129054114400176
Engelfriet, J.: An elementary proof of double Greibach normal form. Inf. Process. Lett. 44(6), 291–293 (1992). https://doi.org/10.1016/0020-0190(92)90101-Z
Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: a simple and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011). https://doi.org/10.1016/j.ipl.2011.03.019
Flajolet, P.: Analytic models and ambiguity of context-free languages. Theoret. Comput. Sci. 49, 283–309 (1987). https://doi.org/10.1016/0304-3975(87)90011-9
Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333 (1963). https://doi.org/10.1145/321172.321179
Ginsburg, S., Greibach, S.A.: Deterministic context-free languages. Inf. Control 9(6), 620–648 (1966). https://doi.org/10.1016/S0019-9958(66)80019-0
Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14(2), 389–418 (1967). https://doi.org/10.1145/321386.321403
Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. J. Comput. Syst. Sci. 1(1), 1–23 (1967). https://doi.org/10.1016/S0022-0000(67)80003-5
Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9, 350–371 (1962). https://doi.org/10.1145/321127.321132
Greibach, S.A.: A new normal-form theorem for context-free phrase structure grammars. J. ACM 12, 42–52 (1965). https://doi.org/10.1145/321250.321254
Greibach, S.A.: The hardest context-free language. SIAM J. Comput. 2(4), 304–310 (1973). https://doi.org/10.1137/0202025
Greibach, S.A.: Jump PDA’s and hierarchies of deterministic context-free languages. SIAM J. Comput. 3(2), 111–127 (1974). https://doi.org/10.1137/0203009
Holzer, M., Lange, K.-J.: On the complexities of linear LL(1) and LR(1) grammars. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 299–308. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57163-9_25
Ibarra, O.H., Kim, S.M.: Characterizations and computational complexity of systolic trellis automata. Theoret. Comput. Sci. 29, 123–153 (1984). https://doi.org/10.1016/0304-3975(84)90015-X
Immerman, N.: Relational queries computable in polynomial time. Inf. Control 68(1–3), 86–104 (1986). https://doi.org/10.1016/S0019-9958(86)80029-8
Immerman, N.: Descriptive Complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0539-5
Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Int. J. Found. Comput. Sci. 19(3), 597–615 (2008). https://doi.org/10.1142/S012905410800584X
Jeż, A., Okhotin, A.: Conjunctive grammars over a unary alphabet: undecidability and unbounded growth. Theory Comput. Syst. 46(1), 27–58 (2010). https://doi.org/10.1007/s00224-008-9139-5
Jeż, A., Okhotin, A.: Computational completeness of equations over sets of natural numbers. Inf. Comput. 237, 56–94 (2014). https://doi.org/10.1016/j.ic.2014.05.001
Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–325. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6_25
Kanazawa, M., Kobele, G.M., Michaelis, J., Salvati, S., Yoshinaka, R.: The failure of the strong pumping lemma for multiple context-free languages. Theory Comput. Syst. 55(1), 250–278 (2014). https://doi.org/10.1007/s00224-014-9534-z
Kelemenová, A.: Complexity of normal form grammars. Theoret. Comput. Sci. 28(3), 299–314 (1983). https://doi.org/10.1016/0304-3975(83)90026-9
Kountouriotis, V., Nomikos, C., Rondogiannis, P.: Well-founded semantics for Boolean grammars. Inf. Comput. 207(9), 945–967 (2009). https://doi.org/10.1016/j.ic.2009.05.002
Kowalski, R.: Logic for Problem Solving. North-Holland, Amsterdam (1979)
Kunc, M.: The power of commuting with finite sets of words. Theory Comput. Syst. 40(4), 521–551 (2007). https://doi.org/10.1007/s00224-006-1321-z
Kuznetsov, S.: Conjunctive grammars in Greibach normal form and the Lambek calculus with additive connectives. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-2013. LNCS, vol. 8036, pp. 242–249. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39998-5_15
Kuznetsov, S., Okhotin, A.: Conjunctive categorial grammars. In: Proceedings of 15th Meeting on the Mathematics of Language (MOL 2017, London, UK, 13–14 July 2017), pp. 141–151. ACL (2017)
Lange, M.: Alternating context-free languages and linear time \(\mu \)-calculus with sequential composition. Electron. Notes Theoret. Comput. Sci. 68(2), 70–86 (2002). https://doi.org/10.1016/S1571-0661(05)80365-2
Lehtinen, T., Okhotin, A.: Boolean grammars and GSM mappings. Int. J. Found. Comput. Sci. 21(5), 799–815 (2010). https://doi.org/10.1142/S0129054110007568
Lewis II, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of context-free and context-sensitive languages. In: IEEE Conference Record on Switching Circuit Theory and Logical Design, pp. 191–202 (1965). https://doi.org/10.1109/FOCS.1965.14
McNaughton, R.: Parenthesis grammars. J. ACM 14(3), 490–500 (1967). https://doi.org/10.1145/321406.321411
Nakanishi, R., Takada, K., Nii, H., Seki, H.: Efficient recognition algorithms for parallel multiple context-free languages and for multiple context-free languages. IEICE Trans. Inf. Syst. E81-D:11, 1148–1161 (1998)
Ogden, W.F.: A helpful result for proving inherent ambiguity. Math. Syst. Theory 2(3), 191–194 (1968). https://doi.org/10.1007/BF01694004
Ogden, W., Ross, R.J., Winklmann, K.: An ‘interchange lemma’ for context-free languages. SIAM J. Comput. 14(2), 410–415 (1985). https://doi.org/10.1137/0214031
Okhotin, A.: Conjunctive grammars. J. Automata Lang. Comb. 6(4), 519–535 (2001)
Okhotin, A.: Boolean grammars. Inf. Comput. 194(1), 19–48 (2004). https://doi.org/10.1016/j.ic.2004.03.006
Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata. Informatique Théorique et Applications 38(1), 69–88 (2004). https://doi.org/10.1051/ita:2004004
Okhotin, A.: Unresolved systems of language equations: expressive power and decision problems. Theoret. Comput. Sci. 349(3), 283–308 (2005). https://doi.org/10.1016/j.tcs.2005.07.037
Okhotin, A.: Recursive descent parsing for Boolean grammars. Acta Informatica 44(3–4), 167–189 (2007). https://doi.org/10.1007/s00236-007-0045-0
Okhotin, A.: Unambiguous Boolean grammars. Inf. Comput. 206, 1234–1247 (2008). https://doi.org/10.1016/j.ic.2008.03.023
Okhotin, A.: Decision problems for language equations. J. Comput. Syst. Sci. 76(3–4), 251–266 (2010). https://doi.org/10.1016/j.jcss.2009.08.002
Okhotin, A.: Non-erasing variants of the Chomsky–Schützenberger theorem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31653-1_12
Okhotin, A.: Conjunctive and Boolean grammars: the true general case of the context-free grammars. Comput. Sci. Rev. 9, 27–59 (2013). https://doi.org/10.1016/j.cosrev.2013.06.001
Okhotin, A.: Parsing by matrix multiplication generalized to Boolean grammars. Theoret. Comput. Sci. 516, 101–120 (2014). https://doi.org/10.1016/j.tcs.2013.09.011
Okhotin, A.: The hardest language for conjunctive grammars. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 340–351. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34171-2_24
Okhotin, A., Reitwießner, C.: Conjunctive grammars with restricted disjunction. Theoret. Comput. Sci. 411(26–28), 2559–2571 (2010). https://doi.org/10.1016/j.tcs.2010.03.015
Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata. SIGACT News 45(2), 47–67 (2014). https://doi.org/10.1145/2636805.2636821
Pereira, F.C.N., Warren, D.H.D.: Parsing as deduction. In: 21st Annual Meeting of the Association for Computational Linguistics (ACL 1983, Cambridge, Massachusetts, USA, 15–17 June 1983), pp. 137–144 (1983)
Pollard, C.J.: Generalized phrase structure grammars, head grammars, and natural language. Ph.D. thesis, Stanford University (1984)
Rajasekaran, S., Yooseph, S.: TAL recognition in \(O(M(n^2))\) time. J. Comput. Syst. Sci. 56(1), 83–89 (1998). https://doi.org/10.1006/jcss.1997.1537
Rosenkrantz, D.J.: Matrix equations and normal forms for context-free grammars. J. ACM 14(3), 501–507 (1967). https://doi.org/10.1145/321406.321412
Rounds, W.C.: LFP: a logic for linguistic descriptions and an analysis of its complexity. Comput. Linguist. 14(4), 1–9 (1988)
Rytter, W.: On the recognition of context-free languages. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 318–325. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-16066-3_26
Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer, New York (1978). https://doi.org/10.1007/978-1-4612-6264-0
Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoret. Comput. Sci. 88(2), 191–229 (1991). https://doi.org/10.1016/0304-3975(91)90374-B
Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning, Boston (2012)
Sokołowski, S.: A method for proving programming languages non context-free. Inf. Process. Lett. 7(2), 151–153 (1978). https://doi.org/10.1016/0020-0190(78)90080-7
Sudborough, I.H.: A note on tape-bounded complexity classes and linear context-free languages. J. ACM 22(4), 499–500 (1975). https://doi.org/10.1145/321906.321913
Szabari, A.: Alternujúce ZásobnÃkové Automaty (Alternating Pushdown Automata). M.Sc. thesis, 45 p. Diploma work, University of KoÅ¡ice (Czechoslovakia) (1991). (in Slovak)
Terrier, V.: On real-time one-way cellular array. Theoret. Comput. Sci. 141(1–2), 331–335 (1995). https://doi.org/10.1016/0304-3975(94)00212-2
Terrier, V.: Recognition of poly-slender context-free languages by trellis automata. Theoret. Comput. Sci. 692, 1–24 (2017). https://doi.org/10.1016/j.tcs.2017.05.041
Terrier, V.: Some computational limits of trellis automata. In: Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 176–186. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58631-1_14
Urbanek, F.J.: On Greibach normal form construction. Theoret. Comput. Sci. 40, 315–317 (1985). https://doi.org/10.1016/0304-3975(85)90173-2
Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput. Syst. Sci. 10(2), 308–314 (1975). https://doi.org/10.1016/S0022-0000(75)80046-8
Vardi, M.Y.: The complexity of relational query languages. In: STOC 1982, pp. 137–146 (1982). https://doi.org/10.1109/SFCS.1981.18
Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free grammars. Math. Syst. Theory 27(6), 511–546 (1994). https://doi.org/10.1007/BF01191624
Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various grammatical formalisms. In: 25th Annual Meeting of Association for Computational Linguistics (ACL 1987), pp. 104–111 (1987)
Yoshinaka, R.: Distributional learning of conjunctive grammars and contextual binary feature grammars. J. Comput. Syst. Sci. (to appear). https://doi.org/10.1016/j.jcss.2017.07.004
Yoshinaka, R., Kaji, Y., Seki, H.: Chomsky-Schützenberger-type characterization of multiple context-free languages. In: Dediu, A.-H., Fernau, H., MartÃn-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 596–607. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2_50
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Okhotin, A. (2018). Underlying Principles and Recurring Ideas of Formal Grammars. In: Klein, S., MartÃn-Vide, C., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2018. Lecture Notes in Computer Science(), vol 10792. Springer, Cham. https://doi.org/10.1007/978-3-319-77313-1_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-77313-1_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-77312-4
Online ISBN: 978-3-319-77313-1
eBook Packages: Computer ScienceComputer Science (R0)