Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Underlying Principles and Recurring Ideas of Formal Grammars

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10792))

Abstract

The paper investigates some of the fundamental ideas of the context-free grammar theory, as they are applied to several extensions and subclasses of context-free grammars. For these grammar families, including multi-component grammars, tree-adjoining grammars, conjunctive grammars and Boolean grammars, a summary of the following properties is given: parse trees, language equations, closure under several operations, normal forms, parsing algorithms, representation in the FO(LFP) logic, representations by automata and by categorial grammars, homomorphic characterizations, hardest language theorems, pumping lemmata and other limitations, computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aizikowitz, T., Kaminski, M.: Conjunctive grammars and alternating pushdown automata. Acta Informatica 50(3), 175–197 (2013). https://doi.org/10.1007/978-3-540-69937-8_6

    Article  MathSciNet  MATH  Google Scholar 

  2. Aizikowitz, T., Kaminski, M.: LR(0) conjunctive grammars and deterministic synchronized alternating pushdown automata. J. Comput. Syst. Sci. 82(8), 1329–1359 (2016). https://doi.org/10.1016/j.jcss.2016.05.008

    Article  MathSciNet  MATH  Google Scholar 

  3. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56, 3 (2009). https://doi.org/10.1145/1516512.1516518

    Article  MathSciNet  MATH  Google Scholar 

  4. Bader, C., Moura, A.: A generalization of Ogden’s lemma. J. ACM 29(2), 404–407 (1982). https://doi.org/10.1145/322307.322315

    Article  MathSciNet  MATH  Google Scholar 

  5. Bar-Hillel, Y., Gaifman, H., Shamir, E.: On categorial and phrase structure grammars. Bull. Res. Counc. Israel 9F, 155–166 (1960)

    MathSciNet  MATH  Google Scholar 

  6. Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase-structure grammars. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung 14, 143–177 (1961)

    MathSciNet  MATH  Google Scholar 

  7. Barash, M., Okhotin, A.: An extension of context-free grammars with one-sided context specifications. Inf. Comput. 237, 268–293 (2014). https://doi.org/10.1016/j.ic.2014.03.003

    Article  MathSciNet  MATH  Google Scholar 

  8. Barash, M., Okhotin, A.: Two-sided context specifications in formal grammars. Theoret. Comput. Sci. 591, 134–153 (2015). https://doi.org/10.1016/j.tcs.2015.05.004

    Article  MathSciNet  MATH  Google Scholar 

  9. Berstel, J., Boasson, L.: Balanced grammars and their languages. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 3–25. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45711-9_1

    Chapter  Google Scholar 

  10. Blattner, M., Ginsburg, S.: Position-restricted grammar forms and grammars. Theoret. Comput. Sci. 17(1), 1–27 (1982). https://doi.org/10.1016/0304-3975(82)90128-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Blum, N.: More on the power of chain rules in context-free grammars. Theoret. Comput. Sci. 27, 287–295 (1983). https://doi.org/10.1016/0304-3975(82)90122-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Boasson, L., Nivat, M.: Le cylindre des langages linéaires. Math. Syst. Theory 11, 147–155 (1977). https://doi.org/10.1007/BF01768473

    Article  MATH  Google Scholar 

  13. Boullier, P.: A cubic time extension of context-free grammars. Grammars 3(2–3), 111–131 (2000). https://doi.org/10.1023/A:1009907814595

    Article  MathSciNet  MATH  Google Scholar 

  14. von Braunmühl, B., Verbeek, R.: Input driven languages are recognized in \(\log n\) space. North-Holland Math. Stud. 102, 1–19 (1985). https://doi.org/10.1016/S0304-0208(08)73072-X

    Article  MathSciNet  MATH  Google Scholar 

  15. Brent, R.P., Goldschlager, L.M.: A parallel algorithm for context-free parsing. Aust. Comput. Sci. Commun. 6(7), 7.1–7.10 (1984)

    Google Scholar 

  16. Buchholz, T., Kutrib, M.: On time computability of functions in one-way cellular automata. Acta Informatica 35(4), 329–352 (1998). https://doi.org/10.1007/s002360050123

    Article  MathSciNet  MATH  Google Scholar 

  17. Chomsky, N.: Three models for the description of language. IRE Trans. Inf. Theory 2(3), 113–124 (1956). https://doi.org/10.1109/TIT.1956.1056813

    Article  MATH  Google Scholar 

  18. Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages, In: Braffort, H. (ed.) Computer Programming and Formal Systems, pp. 118–161. North-Holland, Amsterdam (1963). https://doi.org/10.1016/S0049-237X(08)72023-8

  19. Chytil, M.P.: Kins of context-free languages. In: Gruska, J., Rovan, B., Wiedermann, J. (eds.) MFCS 1986. LNCS, vol. 233, pp. 44–58. Springer, Heidelberg (1986). https://doi.org/10.1007/BFb0016233

    Chapter  Google Scholar 

  20. Clark, A., Eyraud, R., Habrard, A.: Using contextual representations to efficiently learn context-freelanguages. J. Mach. Learn. Res. 11, 2707–2744 (2010). http://www.jmlr.org/papers/v11/clark10a.html

  21. Cook, S.A.: Deterministic CFL’s are accepted simultaneously in polynomial time and log squared space. In: 11th Annual ACM Symposium on Theory of Computing, (STOC 1979, 30 April–2 May 1979, Atlanta, Georgia, USA), pp. 338–345 (1979). https://doi.org/10.1145/800135.804426

  22. Crespi Reghizzi, S., San Pietro, P.: The missing case in Chomsky-Schützenberger theorem. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe, B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 345–358. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30000-9_27

    Chapter  Google Scholar 

  23. Droste, M., Vogler, H.: The Chomsky-Schützenberger theorem for quantitative context-free languages. Int. J. Found. Comput. Sci. 25(8), 955–970 (2014). https://doi.org/10.1142/S0129054114400176

    Article  MATH  Google Scholar 

  24. Engelfriet, J.: An elementary proof of double Greibach normal form. Inf. Process. Lett. 44(6), 291–293 (1992). https://doi.org/10.1016/0020-0190(92)90101-Z

    Article  MathSciNet  MATH  Google Scholar 

  25. Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: a simple and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011). https://doi.org/10.1016/j.ipl.2011.03.019

    Article  MathSciNet  MATH  Google Scholar 

  26. Flajolet, P.: Analytic models and ambiguity of context-free languages. Theoret. Comput. Sci. 49, 283–309 (1987). https://doi.org/10.1016/0304-3975(87)90011-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333 (1963). https://doi.org/10.1145/321172.321179

    Article  MATH  Google Scholar 

  28. Ginsburg, S., Greibach, S.A.: Deterministic context-free languages. Inf. Control 9(6), 620–648 (1966). https://doi.org/10.1016/S0019-9958(66)80019-0

    Article  MathSciNet  MATH  Google Scholar 

  29. Ginsburg, S., Greibach, S.A., Harrison, M.A.: One-way stack automata. J. ACM 14(2), 389–418 (1967). https://doi.org/10.1145/321386.321403

    Article  MathSciNet  MATH  Google Scholar 

  30. Ginsburg, S., Harrison, M.A.: Bracketed context-free languages. J. Comput. Syst. Sci. 1(1), 1–23 (1967). https://doi.org/10.1016/S0022-0000(67)80003-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Ginsburg, S., Rice, H.G.: Two families of languages related to ALGOL. J. ACM 9, 350–371 (1962). https://doi.org/10.1145/321127.321132

    Article  MathSciNet  MATH  Google Scholar 

  32. Greibach, S.A.: A new normal-form theorem for context-free phrase structure grammars. J. ACM 12, 42–52 (1965). https://doi.org/10.1145/321250.321254

    Article  MathSciNet  MATH  Google Scholar 

  33. Greibach, S.A.: The hardest context-free language. SIAM J. Comput. 2(4), 304–310 (1973). https://doi.org/10.1137/0202025

    Article  MathSciNet  MATH  Google Scholar 

  34. Greibach, S.A.: Jump PDA’s and hierarchies of deterministic context-free languages. SIAM J. Comput. 3(2), 111–127 (1974). https://doi.org/10.1137/0203009

    Article  MathSciNet  MATH  Google Scholar 

  35. Holzer, M., Lange, K.-J.: On the complexities of linear LL(1) and LR(1) grammars. In: Ésik, Z. (ed.) FCT 1993. LNCS, vol. 710, pp. 299–308. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57163-9_25

    Chapter  Google Scholar 

  36. Ibarra, O.H., Kim, S.M.: Characterizations and computational complexity of systolic trellis automata. Theoret. Comput. Sci. 29, 123–153 (1984). https://doi.org/10.1016/0304-3975(84)90015-X

    Article  MathSciNet  MATH  Google Scholar 

  37. Immerman, N.: Relational queries computable in polynomial time. Inf. Control 68(1–3), 86–104 (1986). https://doi.org/10.1016/S0019-9958(86)80029-8

    Article  MathSciNet  MATH  Google Scholar 

  38. Immerman, N.: Descriptive Complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0539-5

    Book  MATH  Google Scholar 

  39. Jeż, A.: Conjunctive grammars can generate non-regular unary languages. Int. J. Found. Comput. Sci. 19(3), 597–615 (2008). https://doi.org/10.1142/S012905410800584X

    Article  MATH  Google Scholar 

  40. Jeż, A., Okhotin, A.: Conjunctive grammars over a unary alphabet: undecidability and unbounded growth. Theory Comput. Syst. 46(1), 27–58 (2010). https://doi.org/10.1007/s00224-008-9139-5

    Article  MathSciNet  MATH  Google Scholar 

  41. Jeż, A., Okhotin, A.: Computational completeness of equations over sets of natural numbers. Inf. Comput. 237, 56–94 (2014). https://doi.org/10.1016/j.ic.2014.05.001

    Article  MathSciNet  MATH  Google Scholar 

  42. Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–325. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6_25

    Chapter  Google Scholar 

  43. Kanazawa, M., Kobele, G.M., Michaelis, J., Salvati, S., Yoshinaka, R.: The failure of the strong pumping lemma for multiple context-free languages. Theory Comput. Syst. 55(1), 250–278 (2014). https://doi.org/10.1007/s00224-014-9534-z

    Article  MathSciNet  MATH  Google Scholar 

  44. Kelemenová, A.: Complexity of normal form grammars. Theoret. Comput. Sci. 28(3), 299–314 (1983). https://doi.org/10.1016/0304-3975(83)90026-9

    Article  MathSciNet  MATH  Google Scholar 

  45. Kountouriotis, V., Nomikos, C., Rondogiannis, P.: Well-founded semantics for Boolean grammars. Inf. Comput. 207(9), 945–967 (2009). https://doi.org/10.1016/j.ic.2009.05.002

    Article  MathSciNet  MATH  Google Scholar 

  46. Kowalski, R.: Logic for Problem Solving. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  47. Kunc, M.: The power of commuting with finite sets of words. Theory Comput. Syst. 40(4), 521–551 (2007). https://doi.org/10.1007/s00224-006-1321-z

    Article  MathSciNet  MATH  Google Scholar 

  48. Kuznetsov, S.: Conjunctive grammars in Greibach normal form and the Lambek calculus with additive connectives. In: Morrill, G., Nederhof, M.-J. (eds.) FG 2012-2013. LNCS, vol. 8036, pp. 242–249. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39998-5_15

    Chapter  Google Scholar 

  49. Kuznetsov, S., Okhotin, A.: Conjunctive categorial grammars. In: Proceedings of 15th Meeting on the Mathematics of Language (MOL 2017, London, UK, 13–14 July 2017), pp. 141–151. ACL (2017)

    Google Scholar 

  50. Lange, M.: Alternating context-free languages and linear time \(\mu \)-calculus with sequential composition. Electron. Notes Theoret. Comput. Sci. 68(2), 70–86 (2002). https://doi.org/10.1016/S1571-0661(05)80365-2

    Article  MATH  Google Scholar 

  51. Lehtinen, T., Okhotin, A.: Boolean grammars and GSM mappings. Int. J. Found. Comput. Sci. 21(5), 799–815 (2010). https://doi.org/10.1142/S0129054110007568

    Article  MathSciNet  MATH  Google Scholar 

  52. Lewis II, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of context-free and context-sensitive languages. In: IEEE Conference Record on Switching Circuit Theory and Logical Design, pp. 191–202 (1965). https://doi.org/10.1109/FOCS.1965.14

  53. McNaughton, R.: Parenthesis grammars. J. ACM 14(3), 490–500 (1967). https://doi.org/10.1145/321406.321411

    Article  MathSciNet  MATH  Google Scholar 

  54. Nakanishi, R., Takada, K., Nii, H., Seki, H.: Efficient recognition algorithms for parallel multiple context-free languages and for multiple context-free languages. IEICE Trans. Inf. Syst. E81-D:11, 1148–1161 (1998)

    Google Scholar 

  55. Ogden, W.F.: A helpful result for proving inherent ambiguity. Math. Syst. Theory 2(3), 191–194 (1968). https://doi.org/10.1007/BF01694004

    Article  MathSciNet  MATH  Google Scholar 

  56. Ogden, W., Ross, R.J., Winklmann, K.: An ‘interchange lemma’ for context-free languages. SIAM J. Comput. 14(2), 410–415 (1985). https://doi.org/10.1137/0214031

    Article  MathSciNet  MATH  Google Scholar 

  57. Okhotin, A.: Conjunctive grammars. J. Automata Lang. Comb. 6(4), 519–535 (2001)

    MathSciNet  MATH  Google Scholar 

  58. Okhotin, A.: Boolean grammars. Inf. Comput. 194(1), 19–48 (2004). https://doi.org/10.1016/j.ic.2004.03.006

    Article  MathSciNet  MATH  Google Scholar 

  59. Okhotin, A.: On the equivalence of linear conjunctive grammars to trellis automata. Informatique Théorique et Applications 38(1), 69–88 (2004). https://doi.org/10.1051/ita:2004004

    Article  MathSciNet  MATH  Google Scholar 

  60. Okhotin, A.: Unresolved systems of language equations: expressive power and decision problems. Theoret. Comput. Sci. 349(3), 283–308 (2005). https://doi.org/10.1016/j.tcs.2005.07.037

    Article  MathSciNet  MATH  Google Scholar 

  61. Okhotin, A.: Recursive descent parsing for Boolean grammars. Acta Informatica 44(3–4), 167–189 (2007). https://doi.org/10.1007/s00236-007-0045-0

    Article  MathSciNet  MATH  Google Scholar 

  62. Okhotin, A.: Unambiguous Boolean grammars. Inf. Comput. 206, 1234–1247 (2008). https://doi.org/10.1016/j.ic.2008.03.023

    Article  MathSciNet  MATH  Google Scholar 

  63. Okhotin, A.: Decision problems for language equations. J. Comput. Syst. Sci. 76(3–4), 251–266 (2010). https://doi.org/10.1016/j.jcss.2009.08.002

    Article  MathSciNet  MATH  Google Scholar 

  64. Okhotin, A.: Non-erasing variants of the Chomsky–Schützenberger theorem. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 121–129. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31653-1_12

    Chapter  Google Scholar 

  65. Okhotin, A.: Conjunctive and Boolean grammars: the true general case of the context-free grammars. Comput. Sci. Rev. 9, 27–59 (2013). https://doi.org/10.1016/j.cosrev.2013.06.001

    Article  MATH  Google Scholar 

  66. Okhotin, A.: Parsing by matrix multiplication generalized to Boolean grammars. Theoret. Comput. Sci. 516, 101–120 (2014). https://doi.org/10.1016/j.tcs.2013.09.011

    Article  MathSciNet  MATH  Google Scholar 

  67. Okhotin, A.: The hardest language for conjunctive grammars. In: Kulikov, A.S., Woeginger, G.J. (eds.) CSR 2016. LNCS, vol. 9691, pp. 340–351. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34171-2_24

    Google Scholar 

  68. Okhotin, A., Reitwießner, C.: Conjunctive grammars with restricted disjunction. Theoret. Comput. Sci. 411(26–28), 2559–2571 (2010). https://doi.org/10.1016/j.tcs.2010.03.015

    Article  MathSciNet  MATH  Google Scholar 

  69. Okhotin, A., Salomaa, K.: Complexity of input-driven pushdown automata. SIGACT News 45(2), 47–67 (2014). https://doi.org/10.1145/2636805.2636821

    Article  MathSciNet  MATH  Google Scholar 

  70. Pereira, F.C.N., Warren, D.H.D.: Parsing as deduction. In: 21st Annual Meeting of the Association for Computational Linguistics (ACL 1983, Cambridge, Massachusetts, USA, 15–17 June 1983), pp. 137–144 (1983)

    Google Scholar 

  71. Pollard, C.J.: Generalized phrase structure grammars, head grammars, and natural language. Ph.D. thesis, Stanford University (1984)

    Google Scholar 

  72. Rajasekaran, S., Yooseph, S.: TAL recognition in \(O(M(n^2))\) time. J. Comput. Syst. Sci. 56(1), 83–89 (1998). https://doi.org/10.1006/jcss.1997.1537

    Article  MathSciNet  MATH  Google Scholar 

  73. Rosenkrantz, D.J.: Matrix equations and normal forms for context-free grammars. J. ACM 14(3), 501–507 (1967). https://doi.org/10.1145/321406.321412

    Article  MathSciNet  MATH  Google Scholar 

  74. Rounds, W.C.: LFP: a logic for linguistic descriptions and an analysis of its complexity. Comput. Linguist. 14(4), 1–9 (1988)

    Google Scholar 

  75. Rytter, W.: On the recognition of context-free languages. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 318–325. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-16066-3_26

    Chapter  Google Scholar 

  76. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer, New York (1978). https://doi.org/10.1007/978-1-4612-6264-0

    Book  MATH  Google Scholar 

  77. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoret. Comput. Sci. 88(2), 191–229 (1991). https://doi.org/10.1016/0304-3975(91)90374-B

    Article  MathSciNet  MATH  Google Scholar 

  78. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning, Boston (2012)

    MATH  Google Scholar 

  79. Sokołowski, S.: A method for proving programming languages non context-free. Inf. Process. Lett. 7(2), 151–153 (1978). https://doi.org/10.1016/0020-0190(78)90080-7

    Article  MathSciNet  MATH  Google Scholar 

  80. Sudborough, I.H.: A note on tape-bounded complexity classes and linear context-free languages. J. ACM 22(4), 499–500 (1975). https://doi.org/10.1145/321906.321913

    Article  MathSciNet  MATH  Google Scholar 

  81. Szabari, A.: Alternujúce Zásobníkové Automaty (Alternating Pushdown Automata). M.Sc. thesis, 45 p. Diploma work, University of Košice (Czechoslovakia) (1991). (in Slovak)

    Google Scholar 

  82. Terrier, V.: On real-time one-way cellular array. Theoret. Comput. Sci. 141(1–2), 331–335 (1995). https://doi.org/10.1016/0304-3975(94)00212-2

    Article  MathSciNet  MATH  Google Scholar 

  83. Terrier, V.: Recognition of poly-slender context-free languages by trellis automata. Theoret. Comput. Sci. 692, 1–24 (2017). https://doi.org/10.1016/j.tcs.2017.05.041

    Article  MathSciNet  MATH  Google Scholar 

  84. Terrier, V.: Some computational limits of trellis automata. In: Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E. (eds.) AUTOMATA 2017. LNCS, vol. 10248, pp. 176–186. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58631-1_14

    Chapter  Google Scholar 

  85. Urbanek, F.J.: On Greibach normal form construction. Theoret. Comput. Sci. 40, 315–317 (1985). https://doi.org/10.1016/0304-3975(85)90173-2

    Article  MathSciNet  MATH  Google Scholar 

  86. Valiant, L.G.: General context-free recognition in less than cubic time. J. Comput. Syst. Sci. 10(2), 308–314 (1975). https://doi.org/10.1016/S0022-0000(75)80046-8

    Article  MathSciNet  MATH  Google Scholar 

  87. Vardi, M.Y.: The complexity of relational query languages. In: STOC 1982, pp. 137–146 (1982). https://doi.org/10.1109/SFCS.1981.18

  88. Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free grammars. Math. Syst. Theory 27(6), 511–546 (1994). https://doi.org/10.1007/BF01191624

    Article  MathSciNet  MATH  Google Scholar 

  89. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions produced by various grammatical formalisms. In: 25th Annual Meeting of Association for Computational Linguistics (ACL 1987), pp. 104–111 (1987)

    Google Scholar 

  90. Yoshinaka, R.: Distributional learning of conjunctive grammars and contextual binary feature grammars. J. Comput. Syst. Sci. (to appear). https://doi.org/10.1016/j.jcss.2017.07.004

  91. Yoshinaka, R., Kaji, Y., Seki, H.: Chomsky-Schützenberger-type characterization of multiple context-free languages. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 596–607. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2_50

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Okhotin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okhotin, A. (2018). Underlying Principles and Recurring Ideas of Formal Grammars. In: Klein, S., Martín-Vide, C., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2018. Lecture Notes in Computer Science(), vol 10792. Springer, Cham. https://doi.org/10.1007/978-3-319-77313-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77313-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77312-4

  • Online ISBN: 978-3-319-77313-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics