Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Automatic Feature Extraction Approach to Image Classification Using Genetic Programming

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10784))

Abstract

Feature extraction is an essential process for image data dimensionality reduction and classification. However, feature extraction is very difficult and often requires human intervention. Genetic Programming (GP) can achieve automatic feature extraction and image classification but the majority of existing methods extract low-level features from raw images without any image-related operations. Furthermore, the work on the combination of image-related operators/descriptors in GP for feature extraction and image classification is limited. This paper proposes a multi-layer GP approach (MLGP) to performing automatic high-level feature extraction and classification. A new program structure, a new function set including a number of image operators/descriptors and two region detectors, and a new terminal set are designed in this approach. The performance of the proposed method is examined on six different data sets of varying difficulty and compared with five GP based methods and 42 traditional image classification methods. Experimental results show that the proposed method achieves better or comparable performance than these baseline methods. Further analysis on the example programs evolved by the proposed MLGP method reveals the good interpretability of MLGP and gives insight into how this method can effectively extract high-level features for image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pinz, A.: Object categorization. Found. Trends Comput. Graph. Vis. 1(4), 255–353 (2005)

    Article  MATH  Google Scholar 

  2. Haralick, R.M., Shanmugam, K., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  3. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, vol. 1, pp. 582–585. IEEE (1994)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  5. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  6. Al-Sahaf, H., Al-Sahaf, A., Xue, B., Johnston, M., Zhang, M.: Automatically evolving rotation-invariant texture image descriptors by genetic programming. IEEE Trans. Evol. Comput. 21(1), 83–101 (2017)

    Google Scholar 

  7. Xue, B., Zhang, M.: Evolutionary feature manipulation in data mining/big data. ACM SIGEVOlution 10(1), 4–11 (2017)

    Article  Google Scholar 

  8. Al-Sahaf, H., Zhang, M., Al-Sahaf, A., Johnston, M.: Keypoints detection and feature extraction: a dynamic genetic programming approach for evolving rotation-invariant texture image descriptors. IEEE Trans. Evol. Comput. (2017). https://doi.org/10.1109/TEVC.2017.2685639

  9. Bi, Y., Zhang, M., Xue, B.: An automatic region detection and processing approach in genetic programming for binary image classification. In: The 32nd International Conference Image and Vision Computing New Zealand (IVCNZ 2017), pp. 1–6. IEEE (2017)

    Google Scholar 

  10. Fu, W., Johnston, M., Zhang, M.: Genetic programming for edge detection: a Gaussian-based approach. Soft Comput. 20(3), 1231–1248 (2016)

    Article  Google Scholar 

  11. Al-Sahaf, H., Song, A., Neshatian, K., Zhang, M.: Extracting image features for classification by two-tier genetic programming. In: 2012 IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2012). https://doi.org/10.1109/CEC.2012.6256412

  12. Al-Sahaf, H., Song, A., Neshatian, K., Zhang, M.: Two-tier genetic programming: towards raw pixel-based image classification. Expert Syst. Appl. 39(16), 12291–12301 (2012)

    Article  Google Scholar 

  13. Atkins, D., Neshatian, K., Zhang, M.: A domain independent genetic programming approach to automatic feature extraction for image classification. In: 2011 IEEE Congress on Evolutionary Computation, pp. 238–245. IEEE (2011)

    Google Scholar 

  14. Lensen, A., Al-Sahaf, H., Zhang, M., Xue, B.: Genetic programming for region detection, feature extraction, feature construction and classification in image data. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 51–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1_4

    Chapter  Google Scholar 

  15. Zhang, M., Ciesielski, V.: Genetic programming for multiple class object detection. In: Foo, N. (ed.) AI 1999. LNCS (LNAI), vol. 1747, pp. 180–192. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46695-9_16

    Chapter  Google Scholar 

  16. Nandi, R., Nandi, A.K., Rangayyan, R.M., Scutt, D.: Classification of breast masses in mammograms using genetic programming and feature selection. Med. Biol. Eng. Compu. 44(8), 683–694 (2006)

    Article  Google Scholar 

  17. Ain, Q.U., Xue, B., Al-Sahaf, H., Zhang, M.: Genetic programming for skin cancer detection in dermoscopic images. In: 2017 IEEE Congress on Evolutionary Computation, pp. 2420–2427. IEEE (2017)

    Google Scholar 

  18. Ryan, C., Fitzgerald, J., Krawiec, K., Medernach, D.: Image classification with genetic programming: building a stage 1 computer aided detector for breast cancer. In: Gandomi, A.H., Alavi, A.H., Ryan, C. (eds.) Handbook of Genetic Programming Applications, pp. 245–287. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20883-1_10

    Chapter  Google Scholar 

  19. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  20. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20). Technical report, Columbia University (1996)

    Google Scholar 

  21. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern. Anal. Mach. Intell. 26(11), 1475–1490 (2004)

    Article  Google Scholar 

  22. Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor wavelets. In: The Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205. IEEE (1998)

    Google Scholar 

  23. Fei-Fei, L., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 524–531. IEEE (2005)

    Google Scholar 

  24. Mallikarjuna, P., Targhi, A.T., Fritz, M., Hayman, E., Caputo, B., Eklundh, J.O.: The KTH-TIPS2 database. Computational Vision and Active Perception Laboratory (CVAP), Stockholm, Sweden (2006). http://www.nada.kth.se/cvap/databases/kth-tips

  25. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200. Technical report CNS-TR-2010-001, California Institute of Technology (2010)

    Google Scholar 

  26. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  27. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Khotanzad, A., Lu, J.H.: Classification of invariant image representations using a neural network. IEEE Trans. Acoust., Speech, Signal Process. 38(6), 1028–1038 (1990)

    Article  Google Scholar 

  29. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Bi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bi, Y., Xue, B., Zhang, M. (2018). An Automatic Feature Extraction Approach to Image Classification Using Genetic Programming. In: Sim, K., Kaufmann, P. (eds) Applications of Evolutionary Computation. EvoApplications 2018. Lecture Notes in Computer Science(), vol 10784. Springer, Cham. https://doi.org/10.1007/978-3-319-77538-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77538-8_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77537-1

  • Online ISBN: 978-3-319-77538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics