Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

White-Rot Fungal Xylanases for Applications in Pulp and Paper Industry

  • Chapter
  • First Online:
Fungal Biorefineries

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Pulp and paper industry plays an important part in the economy of any nation, but it is also considered to be one of the most polluted industries, as it is one of the biggest consumers of natural resources and at the same time, discharges a large amount of harmful waste into the environment especially, water bodies. Stringent regulations have, thus, forced the pulp and paper industry to opt for environment-friendly products and processes. Microbial enzymes have provided the solution to the problem with a large number of them being applied in various sections of pulp and paper processing. Xylanases are one of the best among them, with distinct applications in different sections of pulp and paper processing including, pulping, bleaching, and even effluent treatment. White-rot fungi are considered to be the best candidates for production of xylanases for industrial purposes, with very promising results observed with white-rot fungal xylanases being applied in pulp and paper industry. The chapter explains the current status of pulp and paper industries worldwide and emphasizes the role of environment-friendly technologies for the paper industry. The contribution of microorganisms and their powerful enzyme systems in various applications of paper production has been explained and compared with the conventional processes being used in the industry. The chapter specifically discusses the role of white-rot fungi and their xylanases in paper industry, with details of significant studies carried out in the same section. Potential of white-rot fungal xylanases in future, with major bottlenecks, has also been highlighted. Thus, it provides a major insight to the use of xylanases in pulp and paper industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Addleman K, Archibald FS (1993) Kraft pulp bleaching and delignification by dikaryons and monokaryons of Trametes versicolor. Appl Environ Microbiol 59:266–273

    PubMed  PubMed Central  CAS  Google Scholar 

  • Agnihotri S, Dutt D, Tyagi CH, Kumar A, Upadhyaya JS (2010) Production and biochemical characterization of a novel cellulose-poor alkali-thermo-tolerant xylanase from Coprinellus disseminatus SW-1 NTCC1165. World J Microbiol Biotechnol 26:1349–1359

    Article  CAS  Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302

    Article  PubMed  CAS  Google Scholar 

  • Ali M, Sreekrishnan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5:175–196

    Article  CAS  Google Scholar 

  • Arbeloa M, De Leseleuc J, Goma G, Pommier JC (1992) An evaluation of the potential of lignin peroxidases to improve pulps. TAPPI J 75(3):215–221

    CAS  Google Scholar 

  • Avalos OP, Noyola TP, Plaza IM, Torre M (1996) Induction of xylanase and β-xylosidase in Cellulomonas flavigena growing on different carbon sources. Appl Microbiol Biotechnol 46:405–409

    Google Scholar 

  • Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15:147–157

    Article  PubMed  CAS  Google Scholar 

  • Bajpai P, Bajpai PK (1992) Biobleaching of Kraft pulp. Process Biochem 27:319–325

    Article  CAS  Google Scholar 

  • Balakrishnan H, Srinivasan MC, Rele MV (1997) Extracellular protease activities in relation to xylanase secretion in an alkalophilic Bacillus sp. Biotechnol Lett 18:599–601

    Article  Google Scholar 

  • Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus Kraft pulp. Enzyme Microbiol Technol 27:459–466

    Article  CAS  Google Scholar 

  • Blanchette R (1991) Delignification by wood-decay fungi. Ann RevPhytopath 29:381–398

    Article  CAS  Google Scholar 

  • Blanchette RA, Burnes TA (1988) Selection of white-rot Fungi for biopulping. Biomass 15:93–101

    Article  CAS  Google Scholar 

  • Blanchette RA, Farrel RL, Bunes TA, Wendler PA, Zimmerman W, Brush TS, Snyder RA (1992) Biological control of pitch in pulp and paper production by Ophiostoma piliferum. TAPPI J 75(12):102–106

    CAS  Google Scholar 

  • Burgt Van der T, Tolan JS,Thibault LC (2002) US kraft mills lead in xylanase implementation In: 35th Annual Pulp and Paper Congress and Exhibition, 1–7

    Google Scholar 

  • Buzała KP, Przybysz P, Kalinowska H, Derkowska M (2016) Effect of Cellulases and Xylanases on refining process and Kraft pulp properties. PLoS One 11(8):e0161575. https://doi.org/10.1371/journal.pone.0161575,1/14

    Article  Google Scholar 

  • Carabajal M, Levin L, Aberto E, Lechner B (2012) Effect of co-cultivation of two Pleurotus species on lignocellulolytic enzyme production and mushroom fructification. Int Biodeterior Biodegrad 66:71–76

    Article  CAS  Google Scholar 

  • Chanda SK, Hirst EL, Jones JKN, Percival EGV (1950) The constitution of xylan from esparto grass. J Chem Soc 0:1289–1297

    Google Scholar 

  • Clark TA, Steward D, Bruce M, McDonald A, Singh A, Senior D (1991) Improved bleachability of Radiata pine Kraft pulps following treatment with hemicellulosic enzymes. Appita J 44:389–383

    CAS  Google Scholar 

  • Dowarah P, Boruah P, Goswami T, Barkakati P (2015) Xylanase production from Phanerochaete chrysosporium using response surface methodology and its validation in a bioreactor. Int J Eng Tech Res (IJETR) 3(8):142–147

    Google Scholar 

  • Easton MDL, Kruzynski GM, Solar II, Dye HM (1997) Genetic toxicity of pulp mill effluent on juvenile Chinook salmon (Oncorhynchus tshawytscha) using flow cytometry. Water Sci Technol 35(2–3):347–357

    Article  CAS  Google Scholar 

  • Eda S, Ohnishi A, Kato K (1976) Xylan isolated from the stalk of Nicotiana tabacum. Agric Biol Chem 40:359–364

    CAS  Google Scholar 

  • Elisashvili V, Penninckx M, Kachlishvili E, Tsiklauri N, Metreveli E, Kharziani T, Kvesitadze G (2008) Lentinusedodes and Pleurotus species lignocellulolytic enzymes activity in submerged and solid-state fermentation of lignocellulosic wastes of different composition. Bioresour Technol 99(3):457–462

    Article  PubMed  CAS  Google Scholar 

  • Flores ME, Perea M, Rodriguez O, Malváez A, Huitrón C (1996) Physiological studies on induction and catabolite repression of β-xylosidase and endoxylanase in Streptomyces sp. CH-M-1035. J Biotechnol 49:179–187

    Article  CAS  Google Scholar 

  • Flournoy DS, Paul JA, Kirk TK, Highley TL (1993) Changes in the size and volume of pores in sweetgum wood during simultaneous rot by Phanerochaete chrysosporium Burds. Holzforschung 47(4):297–301

    Article  CAS  Google Scholar 

  • Gallardo O, Fernández-Fernández M, Valls C, Valenzuela SV, Roncero MB, Vidal T, Díaz P, Pastor FIJ (2010) Characterization of a family GH5 Xylanase with activity on neutral oligosaccharides and evaluation as a pulp bleaching aid. Appl Environ Microbiol 76(18):6290–6294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garg AP (1996) Biobleaching effect of Streptomyces thermoviolaceous xylanase preparation on birchwood Kraft pulp. Enzyme Microbiol Technol 18:263–267

    Article  Google Scholar 

  • Gessesse A, Mamo G (1999) High-level xylanase production by an alkalophilic Bacillus sp. by using solid-state fermentation. Enzyme Microbial Technol 25:68–72

    Article  CAS  Google Scholar 

  • Gierer J, Wännström S (1984) Formation of alkali-stable C-C bonds between lignin and carbohydrate fragments during Kraft pulping. Holzforschung 38:181–184

    Article  CAS  Google Scholar 

  • Govumoni SP, Gentela J, Koti S, Haragopal V, Venkateshwar S, VenkateswarRao L (2015) Extracellular Lignocellulolytic enzymes by Phanerochaete chrysosporium (MTCC 787) under solid-state fermentation of agro wastes. Int J Curr Microbiol App Sci 4(10):700–710

    CAS  Google Scholar 

  • Gupta S, Bhushan B, Hoondal GS (1999) Enhanced production of xylanase from Staphylococcus sp. SG-13 using amino acids. World J Microbiol Biotechnol 15:511–512

    Article  CAS  Google Scholar 

  • Gupta S, Bhushan B, Hoondal GS, Kuhad RC (2001) Improved xylanase production from a haloalkalophilic Staphylococcus sp. SG-13 using inexpensive agricultural residues. World J Microbiol Biotechnol 17(1):5–8

    Google Scholar 

  • Hasnul MB, Oorlidah NA, Ikineswary VS, Yusoff MDM (2015) Investigation of oil palm empty fruit bunches in Biosoda pulping by tropical white-rot fungi, Ganoderma austral (FR.) PAT. Malays Appl Biol 44(2):51–57

    Google Scholar 

  • Hatakka A, Hammel K (2011) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed) The mycota, industrial applications, vol 10, 2nd edn. Springer, Berlin, pp 319–340

    Chapter  Google Scholar 

  • Hrmova M, Biely P, Vrsanka M, Petrakova E (1984) Induction of cellulose-and xylan-degrading enzyme complex in yeast Trichosporon cutaneum. Arch Microbiol 161:371–376

    Article  Google Scholar 

  • Hrmova M, Beily P, Vrsanka M (1989) Cellulose and xylan degrading enzymes of Aspergillus terreus. Enzym Microb Technol 11:610–616

    Article  CAS  Google Scholar 

  • Ikura Y, Horikoshi K (1987) Stimulatory effect of certain amino acids on xylanase production by alkalophilic Bacillus sp. Agric Biol Chem 51:3143–3145

    Article  CAS  Google Scholar 

  • Jaeger KE, Eggert T (2004) Enantioselective biocatalysis optimized by directed evolution. Curr Opin Biotechnol 15(4):305–313

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Thakur VV, Manthan M, Mathur RM, Kulkarni AG (2001) Enzymatic prebleaching of pulps: challenges and opportunities in Indian paper industry. Ippta Convention Issue 57:1289–1297

    Google Scholar 

  • James TY, Srivilai P, Kües U, Vilgalys R (2006) Evolution of the bipolar mating system of the mushroom Coprinellus disseminatus from its tetrapolar ancestors involves loss of mating-type-specific pheromone receptor function. Genetics 172:1877–1891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jean P, Hamilton J, Senior DJ (1994) Mill trial experiences with xylanase: AOX and chemical reductions. Pulp and Paper Canada 25(12):126–128

    Google Scholar 

  • Jeffries TW (1992) Enzymatic treatment of pulps: emerging technologies for materials and chemicals for biomass. ACS Symp Ser 476:313–329

    Article  CAS  Google Scholar 

  • Jiménez L, López F (1993) Characterization of paper sheets from agricultural residues. Wood Sci Technol 27(6):468–474

    Article  Google Scholar 

  • Jimenez L, Martinez C, Perez I, Lopez F (1997) Biobleaching procedures for pulp and agricultural residues using Phanerochaete chrysosporium and enzymes. Process Biochem 4:297–304

    Article  Google Scholar 

  • Johnsrud SC, Fenandez N, Lopez P, Gutierrez L, Saez A, Ericksson K-E (1987) Properties of fungal pretreated high yield bagasse pulps. Nordic Pulp Pap Res J 75:47–52

    Google Scholar 

  • Kachlishvili E, Penninckx MJ, Tsiklauri N, Elisashvili V (2005) Effect of nitrogen source on lignocellulosic enzyme production by white-rot basidiomycetes under solid-state cultivation. World JMicrobiolBiotechnol. 22(4):391–397

    Article  CAS  Google Scholar 

  • Kantalinen A, Ratto M, Sundqvist J, Ranua M, Viikari L, Linko M (1988) Hemicellulases and their potential role in bleaching. In: 1988 International Pulp Bleaching Conference, Tappi Proceeding. Atlanta, pp 1–9

    Google Scholar 

  • Kaur H, Dutt D, Tyagi CH (2011) Production of novel alkali-thermo-tolerant cellulase-poor xylanases from Coprinopsis cinerea HK-1 NFCCI-2032. Bioresources 6(2):1376–1391

    CAS  Google Scholar 

  • Kibblewhite PR, Wong KKY (1999) Modification of a commercial radiate pine Kraft pulp using carbohydrate degrading enzymes. Appita J 52(4):300–304

    CAS  Google Scholar 

  • Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–307

    Google Scholar 

  • Kuhad RC, Singh A (1993) Lignocellulose biotechnology: current and future prospects. Crit Rev Biotechnol 13:151–172

    Article  CAS  Google Scholar 

  • Kuhad RC, Manchanda M, Singh A (1998) Optimization of xylanase production by a hyper-xylanolytic mutant strain of Fusarium oxysporum. Process Biochem 33:641–647

    Article  CAS  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  PubMed  CAS  Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2012) Aerobic treatment of handmade paper industrial effluents by white rot fungi. J Bioremed Biodeg 3:151. https://doi.org/10.4172/2155-6199.1000151

    Article  CAS  Google Scholar 

  • Lal M, Dutt D, Kumar A, Gautam A (2015) Optimization of submerged fermentation conditions for two xylanase producers Coprinellus disseminatus MLK-01NTCC-1180 and MLK-07NTCC-1181 and their biochemical characterization. Cellulose Chem Technol 49(5–6):471–483

    CAS  Google Scholar 

  • Leduc C, Daneault C, Delaunois P, Jaspers C, Penninckx MJ (1995) Enzyme pretreatment of Kraft pulp to reduce consumption of bleach chemicals. Appita J 48(6):435–439

    CAS  Google Scholar 

  • Levin L, Forschiassin F (1998) Influence of growth conditions on the production of xylanolytic enzymes by Trametes trogii. World J Microbiol Biotechnol 14:443–446

    Article  CAS  Google Scholar 

  • Levin L, Herrmann C, Papinutti VL (2008) Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii. Biochem Eng J 39(1):207–214

    Article  CAS  Google Scholar 

  • Liu W, Zhu W, Lu Y, Kong Y, Ma G (1998) Production, partial purification and characterization of xylanase from Trichosporon cutaneum SL409. Process Biochem 33:331–326

    Article  CAS  Google Scholar 

  • Lopez C, Blanco A, Pastor FIJ (1998) Xylanase production by a new alkali-tolerant isolate of Bacillus. Biotechnol Lett 20:243–246

    Article  CAS  Google Scholar 

  • Mandal A (2015) Review on microbial xylanases and their applications. Int J Life Sci 4(3):178–187

    Google Scholar 

  • McGeorge LJ, Lonis JB, Atherholt TB, McGarrity GJ (1985) Mutagenicity analyses of industrial effluents: results and considerations for integration into water pollution control program. In: Waters MD, Sandhu SS, Claxton J, Strauss G, Nesnow S (eds) Short-term bioassays in the analysis of complex environmental mixtures. Plenum Press, New York, pp 247–268

    Chapter  Google Scholar 

  • Medeiros RG, Silva FG Jr, Salles BC, Estelles RS, Filho EXF (2002) The performance of fungal xylan-degrading enzyme preparations in elemental chlorine-free bleaching for eucalyptus pulp. J Ind Microbiol Biotechnol 28:204–206

    Article  PubMed  CAS  Google Scholar 

  • Mendonca RT, Jara JF, González V, Elissetche JP, Freer J (2008) Evaluation of the white-rot fungi Ganoderma australe and Ceriporiopsis subvermispora in biotechnological applications. J Ind Microbiol Biotechnol 35:1323

    Article  PubMed  CAS  Google Scholar 

  • Milagres AMF, Magalhaes PO, Ferraz A (2005) Purification and properties of a xylanase from Ceriporiopsis subvermispora cultivated on Pinus taeda. FEMS Microbiol Lett 253:267–272

    Article  PubMed  CAS  Google Scholar 

  • Montoya S, Sanchez OJ, Levin L (2015) Production of lignocellulolytic enzymes from three white-rot fungi by solid-state fermentation and mathematical modeling. Afr J Biotechnol 14(15):1304–1317

    Article  CAS  Google Scholar 

  • Motta FL, Andrade CCP, Santana MHA (2013) A review of xylanase production by the fermentation of xylan: classification, characterization and applications. In: Chandel AK, da Silva SS (eds) Sustainable degradation of lignocellulosic biomass- techniques, applications and commercialization. InTech, Croatia, pp 251–266

    Google Scholar 

  • Nissan H (1981) The pulp and papermaking processes. In: Wangaard FF (ed) Paper, wood: its structure and properties. University Park, PA: Pennsylvania State University, pp 335

    Google Scholar 

  • Paice M, Zhang X (2005) Enzymes find their niche. Pulp and Paper Canada 106(6):17–20

    CAS  Google Scholar 

  • Paice MG, Jurasek L, Ho C, Bourbonnais R, Archibald F (1989) Direct biological bleaching of hardwood Kraft pulp with the fungus Coriolus versicolor. TAPPI J 72:217–221

    CAS  Google Scholar 

  • Paice MG, Gurnagul N, Page DH, Jurasek L (1992) Mechanism of hemicellulose directed prebleaching of Kraft pulp. Enzym Microb Technol 14:272–276

    Article  CAS  Google Scholar 

  • Paice MG, Bourbonnais R, Reid ID, Archibald FS, Jurasek L (1995) Oxidative bleaching enzymes. J Pulp Pap Sci 21:J280–J284

    CAS  Google Scholar 

  • Patrick K (2005) Enzyme technology improves efficiency, cost, safety of stickies. Pulp Pap Can 106(2):23–25

    Google Scholar 

  • Pawar S, Mathur RM, Kulkarni AG (2002) Control of AOX discharges in pulp and paper industry- the role of new fiberlineIppta Convention Issue 57

    Google Scholar 

  • Peck V, Daley R (1994) Toward a ‘greener’ pulp and paper industry. Environ Sci Technol 28(12):524A–527A

    CAS  Google Scholar 

  • Prade RA (1995) Xylanases: from biology to biotechnology. Biotechnol Genet Eng Rev 13:100–131

    Google Scholar 

  • Pryke DC (1997) Elemental chlorine-free (ECF): Pollution prevention for the pulp and paper industry http://www.ecfpaper.org/science/science.html

  • Pryke D (2003) ECF is on a roll. Pulp Pap Int 45(8):27

    Google Scholar 

  • Puchart V, Katapodis P, Biely P, Kremnicky L, Christakopoulos P, Vrsanska M, Kekos D, Marcis BJ, Bhat MK (1999) Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzym Microb Technol 24:355–361

    Article  CAS  Google Scholar 

  • Qinnghe C, Xiaoyu Y, Tiangui N, Cheng J, Qiugang M (2004) The screening of culture condition and properties of xylanase by white-rot fungus Pleurotus ostreatus. Process Biochem 39:1561–1566

    Article  CAS  Google Scholar 

  • Ragagnin de Menezes C, Silva IS, Pavarina EC, Fonseca de Faria A, Franciscon E, Durrant LR (2010) Production of xylooligosaccharides from enzymatic hydrolysis of xylan by white-rot fungi Pleurotus. Acta Scientiarum Technology Maringá 32(1):37–42

    CAS  Google Scholar 

  • Ragauskas AJ, Poll KM, Cesternino AJ (1994) Effects of xylanasepretreatment procedures on non-chlorine bleaching. Enzyme Microbial Technol 16:492–495

    Article  CAS  Google Scholar 

  • Rättö M, Kantelinen A, Bailey M, Viikari L (1992) Potential of enzymes for wood debarking. TAPPI J 76(2):125–128

    Google Scholar 

  • Reid ID (1989) Solid-state fermentations for biological delignification: review. Enzym Microb Technol 11:786–803

    Article  CAS  Google Scholar 

  • Roncero MB, Torres AL, Colom JF, Vidal T (2000) Effects of xylanase treatment on fiber morphology in total chlorine free bleaching (TCF) of eucalyptus pulp. Process Biochem 36:45–50

    Article  CAS  Google Scholar 

  • Roncero MB, Torres AL, Colom JF, Vidal T (2003) Effect of xylanase on ozone bleaching kinetics and properties of Eucalyptus Kraft pulp. J Chem Technol Biotechnol 78:1023–1031

    Article  CAS  Google Scholar 

  • Rytioja J, Hilden K, Yuzon J, Hatakka A, de Vries RP, Makela MR (2014) Plant-polysaccharide-degrading enzymes from Basidiomycetes. Microbiol Mol Biol Rev 78(4):614–649

    Article  PubMed  PubMed Central  Google Scholar 

  • Sachslehner A, Nidetzky B, Kulbe KD, Haltrich D (1998) Induction of mannanase, xylanase and endoglucanase activities in Sclerotium rolfsii. Appl Environ Microbiol 64:594–600

    PubMed  PubMed Central  CAS  Google Scholar 

  • Saleem R, Khurshid M, Safia Ahmed S (2014) Xylanase, Laccase and manganese peroxidase production from white rot Fungi Iranica. J Energy Environ 5(1):59–66

    Article  CAS  Google Scholar 

  • Sanghi A, Garg N, Sharma J, Kuhar K, Kuhad RC, Gupta VK (2008) Optimization of xylanase production using inexpensive agro-residues by alkalophilic Bacillus subtilis ASH in solid state fermentation. World J Microbiol Biotechnol 24:633–640

    Article  CAS  Google Scholar 

  • Schumacher K, Sathaye J (1999) India’s pulp and paper industry: productivity and energy efficiency. Environmental Energy Technologies Division, Ernest Orlando Lawrence Berkeley National Laboratory

    Google Scholar 

  • Scott BP, Young F, Paice MG (1993) Mill-scale enzyme treatment of a softwood Kraft pulp prior to bleaching: brightness was maintained while reducing the active chlorine multiple. Pulp and Paper Canada 94(3):57–61

    CAS  Google Scholar 

  • Senior DJ, Hamilton J (1992) Use of xylanases to decrease the formation of AOX in Kraft pulp bleaching. J Pulp and Paper Science 18(5):J165–J168

    Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  PubMed  CAS  Google Scholar 

  • Siedenberg D, Gerlach SR, Schugerl K, Giuseppin MLF, Hunik J (1998) Production of xylanase by Aspergillus awamori on synthetic medium in shake flask cultures. Process Biochem 33:429–433

    Article  CAS  Google Scholar 

  • Silva da R, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E (2005) Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus miehe. Braz J Microbiol 36:235–241

    Google Scholar 

  • Singh S, Dutt D (2014) Mitigation of adsorbable organic halides in combined effluents of wheat straw soda-AQ pulp bleached with cellulase-poor crude xylanases of Coprinellus disseminatus in elemental chlorine free bleaching. Cellul Chem Technol 48(1–2):127–135

    CAS  Google Scholar 

  • Singh SP, Roymoulik SK (1994) Role of biotechnology in the pulp and paper industry: a review part 2: biobleaching. IPPTA J 6(1):39–42

    CAS  Google Scholar 

  • Singh S, Tyagi CH, Dutt D,Upadhyaya JS (2009)Production of high level of cellulase-poor xylanases by wild strains of white rot fungus Coprinellus disseminatus in solid state fermentation New Biotechnol. 26(¾): 165–170

    Article  CAS  Google Scholar 

  • Singh S, Dutt D, Tyagi CH, Upadhyaya JS (2010) Bio-conventional bleaching of wheat straw soda-AQ pulp with crude xylanases from SH-1 NTCC-1163 and SH-2 NTCC-1164 strains of Coprinellus disseminatus to mitigate AOX generation. New Biotechnol 28(1):47–57

    Article  CAS  Google Scholar 

  • Singh S, Dutt D, Tyagi CH (2011) Environmentally friendly total chlorine free bleaching of wheat straw pulp using novel cellulase poor xylanases of wild strains of Coprinellus disseminatus. Bioresources 6(4):3876–3882

    CAS  Google Scholar 

  • Sood S (2007) India in the world paper markets and emerging Asia. 8th International Technical Conference on Pulp, Paper, Conversion and allied industry, New Delhi, 7–9 Dec 2007, pp 3–7

    Google Scholar 

  • Srinivasan MC, Rele MV (1999) Microbial xylanases for paper industry. Curr Sci 77:137–142

    CAS  Google Scholar 

  • Srivastava R, Srivastava AK (1993) Characterization of a bacterial xylanase resistant to repression by glucose and xylose. Biotechnol Lett 15:847–852

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    Article  PubMed  CAS  Google Scholar 

  • Sun X, Zhang R, Zhang Y (2004) Production of lignocellulolytic enzymes by Trametesgallica and detection of polysaccharide hydrolase and laccase activities in polyacrylamide gels. J Basic Microbiol 44:220–231

    Article  PubMed  CAS  Google Scholar 

  • Suurnäkki A, Tenkanen M, Buchert J, Viikari L (1997) Hemicellulases in the bleaching of chemical pulps. Adv Biochem Eng 57:261–287

    Google Scholar 

  • Swanson S, Rappe C, Malmstorm J, Kringstad KP (1988) Emissions of PCDDs and PCDFs from the pulp industry. Chemosphere 17:681–691

    Article  CAS  Google Scholar 

  • Techapun C, Poosaran N, Watanabe M, Sasaki K (2003) Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocess: a review. Process Biochem 38:1327–1340

    Article  CAS  Google Scholar 

  • Tenkanen M, Siika-aho M, Hausalo T, Puls J, Viikari L (1996) Synergism of xylanolytic enzymes of Trichoderma reesei in the degradation of acetyl-4-O-methylglucuronoxylan. In: Srebotnik E, Messener K (eds) Biotechnology in the pulp and paper industry. Facultas-Universitatsverlag, Vienna, pp 503–508

    Google Scholar 

  • Thakur VV, Jain RK, Mathur RM (2012) Studies on xylanase and laccase enzymatic prebleaching to reduce chlorine-based chemicals during CEH and ECF bleaching. Bioresources 7(2):2220–2235

    Article  CAS  Google Scholar 

  • Thompson G, Swain J, Kay M, Forster CF (2001) The treatment of pulp and paper mill effluent: a review. Biores Technol 77:275–286

    Article  CAS  Google Scholar 

  • Thompson V, Schaller K, Apel W (2003) Purification and characterization of a novel thermo-alkali-stable catalase from Thermus brockianus. Biotechnol Prog 19(4):1292–1299

    Article  PubMed  CAS  Google Scholar 

  • Thorton JW, Eckerman C, Ekman R,Holbolm B(1992) Treatment of alkaline treated pulp for use in papermaking. European Patent Application, # 92304028. I

    Google Scholar 

  • Turner JC, Skerker PS, Burns BJ, Howard JC, Alonso MA, Andres JL (1992) Bleaching with enzymes instead of chlorine-mill trials. Tappi J 75(12):83–89

    CAS  Google Scholar 

  • Tyagi CH, Singh S, Dutt D (2011) Effect of two fungal strains of Coprinellus disseminatus SH-1 NTCC-1163 and SH-2 NTCC-1164 on pulp refining and mechanical strength properties of wheat straw soda-AQ pulp. Cellul Chem Technol 45(3–4):257–263

    CAS  Google Scholar 

  • Viikari L, Kantelinen A, Rättö M, Sundquist J (1991) Enzymes in biomass conversion, pp 12–21. https://doi.org/10.1021/bk-1991-0460.ch002

    Book  Google Scholar 

  • Viikari L, Kantelinen A, Buchert J, Puls J (1994a) Enzymatic accessibility of xylans in lignocellulosic materials. Appl Microbiol Biotechnol 41:124–129

    Article  CAS  Google Scholar 

  • Viikari L, Kantelinen A, Sundquist J, Linko M (1994b) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350

    Article  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22(1–2):161–187

    Article  PubMed  CAS  Google Scholar 

  • William RK, Jeffries TW (2003) Enzyme processes for pulp and paper: a review of recent developments, chapter 12. In: Goodwell B, Darrel DN, Schultz TP (eds) Wood deterioration and preservation- advances in our changing world, ACS symposium series 845, pp 210–241

    Google Scholar 

  • Xia Z, Beaudry A, Bourbonnais R (1996) Effects of cellulases on the surfactant assisted acidic deinking of ONG and OMG. Progress Paper Recycling 5(4):46–58

    CAS  Google Scholar 

  • Xu J, Nogawa M, Okada H, Morikawa Y (1998) Xylanase induction by L-sorbose in a fungus Trichoderma reesei PC-3–7. Biosci Biotechnol Biochem 62:1555–1559

    Article  PubMed  CAS  Google Scholar 

  • Yadav RD, Chaudhry S, Gupta S (2012) Novel application of fungal Phanerochaete sp. and xylanase for reduction in pollution load of paper mill effluent. J Environ Biol 33:223–226

    PubMed  CAS  Google Scholar 

  • Yamasaki T, Hosoya S, Chen C-L, Gratzl JS, Chang HM (1981) Characterization of residual lignin in Kraft pulp. In: The Ekman days international symposium on wood and pulping chemistry Stockholm, vol 2, pp 34–42

    Google Scholar 

  • Zakariashvili NG, Elisashvili VI (1993) Regulation of Cerrena unicolorlignocellulolytic activity by a nitrogen source in culture medium. Microbiology (Eng Trans of Mikrobiologiya) 62:525–528

    Google Scholar 

  • Zhao J, Li X, Qu Y, Gao P (2002) Xylanasepretreatment leads to enhanced soda pulping of wheat straw. Enzym Microb Technol 30:734–740

    Article  CAS  Google Scholar 

  • Zhao J, Li X, Qu Y (2006) Application of enzymes in producing bleached pulp from wheat straw. Bioresour Technol 97:1470–1476

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S. (2018). White-Rot Fungal Xylanases for Applications in Pulp and Paper Industry. In: Kumar, S., Dheeran, P., Taherzadeh, M., Khanal, S. (eds) Fungal Biorefineries. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-90379-8_3

Download citation

Publish with us

Policies and ethics