Abstract
One of the most prominent scenarios for capturing implicit knowledge from heterogeneous data sources concerns the geospatial data domain. In this scenario, ontologies play a key role for managing the totality of geospatial concepts, categories and relations at different resolutions. However, the manual development of geographic ontologies implies an exhausting work due to the rapid growth of the data available on the Internet. In order to address this challenge, the present work describes a semi-automatic approach to build and expand a geographic ontology by integrating the information provided by diverse spatial data sources. The generated ontology can be used as a knowledge resource in a Geographic Information Retrieval system. As a main novelty, the use of OWL 2 as an ontology language allowed us to model and infer new spatial relationships, regarding the use of other less expressive languages such as RDF or OWL 1. Two different spatial ontologies were generated for two specific geographic regions by applying the proposed approach, and the evaluation results showed their suitability to be used as geographic-knowledge resources in Geographic Information Retrieval contexts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
MBR is an expression of the maximum extents of a 2-dimensional object (e.g. point, line, polygon). MBRs are frequently used as an indication of the general position of a geographic feature.
- 2.
- 3.
- 4.
- 5.
- 6.
http://www.geonames.org. GeoNames is an open access geographic database that contains more than eight million place names from all countries in the world.
- 7.
- 8.
http://www.openstreetmap.org. OSM is a collaborative project inspired by Wikipedia that emerged to create an editable and free world map where, instead of editing articles as in Wikipedia, users edit geographic entities.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
OOPS! (OntOlogy Pitfall Scanner!). http://oops.linkeddata.es.
References
Mostafavi, M.A., Edwards, G., Jeansoulin, R.: An ontology-based method for quality assessment of spatial data bases. In: Frank, A.U., Grum, E. (eds.) Third International Symposium on Spatial Data Quality. Geoinfo Series, Department for Geoinformation and Cartography, Vienna University of Technology, pp. 49–66, vol. 1/28a (2004)
Fu, G., Jones, C.B., Abdelmoty, A.I.: Building a geographical ontology for intelligent spatial search on the web. In: Hamza, M.H. (ed.) Databases and Applications, pp. 167–172. IASTED/ACTA Press (2005)
Hess, G.N., Iochpe, C., Ferrara, A., Castano, S.: Towards effective geographic ontology matching. In: Fonseca, F., Rodríguez, M.A., Levashkin, S. (eds.) GeoS 2007. LNCS, vol. 4853, pp. 51–65. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76876-0_4
Albrecht, J., Derman, B., Ramasubramanian, L.: Geo-ontology tools: the missing link. Trans. GIS 12(4), 409–424 (2008). https://doi.org/10.1111/j.1467-9671.2008.01108.x
Hasani, S., Sadeghi-Niaraki, A., Jelokhani-Niaraki, M.: Spatial data integration using ontology-based approach. ISPRS - Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sc. XL-1/W5, 293–296 (2015). https://doi.org/10.5194/isprsarchives-XL-1-W5-293-2015
Baglioni, M., Masserotti, M.V., Renso, C., Spinsanti, L.: Building geospatial ontologies from geographical databases. In: Fonseca, F., Rodríguez, M.A., Levashkin, S. (eds.) GeoS 2007. LNCS, vol. 4853, pp. 195–209. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76876-0_13
Lima, D., Mendonça, A., Salgado, A.C., Souza, D.: Building geospatial ontologies from geographic database schemas in peer data management systems. In: Vinhas, L., Davis Jr., C.A. (eds.) GeoInfo, pp. 1–12. MCT/INPE (2011)
Lehmann, J., Athanasiou, S., Both, A., Buehmann, L., Garcia-Rojas, A., Giannopoulos, G., Hladky, D., Hoeffner, K., Grange, J.J.L., Ngomo, A.C.N., Pietzsch, R., Isele, R., Sherif, M.A., Stadler, C., Wauer, M., Westphal, P.: The GeoKnow Handbook. Technical report (2015)
Hahmann, S., Burghardt, D.: Connecting LinkedGeoData and GeoNames in the spatial semantic web. In: Proceedings of the 6th International GIScience Conference, Zurich (2010)
Zaila, Y.L., Montesi, D.: Geographic information extraction, disambiguation and ranking techniques. In: Proceedings of the 9th Workshop on Geographic Information Retrieval, pp. 11:1–11:7. ACM, New York (2015). https://doi.org/10.1145/2837689.2837695
Cuenca, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.: OWL 2: the next step for OWL. Web Semant. 6(4), 309–322 (2008)
W3C OWL Working Group: OWL 2 Web Ontology Language Document Overview (Second Edition) - W3C Recommendation 11 December 2012 (2012)
Egenhofer, M.J.: On the equivalence of topological relations. Int. J. Geogr. Inf. Syst. 9, 133–152 (1995)
Ping, D., Yong, L.: Building place name ontology to assist in geographic information retrieval. In: 2009 International Forum on Computer Science-Technology and Applications, vol. 1, pp. 306–309, December 2009
Halimi, M., Farajzadeh, M., Delavari, M., Takhtardeshir, A., Moradi, A.: Modelling spatial relationship between climatic conditions and annual parasite incidence of malaria in southern part of Sistan&Balouchistan Province of Iran using spatial statistic models. Asian Pac. J. Trop. Dis. 4, S167–S172 (2014). https://doi.org/10.1016/S2222-1808(14)60434-5
Tasic, I., Porter, R.J.: Modeling spatial relationships between multimodal transportation infrastructure and traffic safety outcomes in urban environments. Saf. Sci. 82, 325–337 (2016). https://doi.org/10.1016/j.ssci.2015.09.021
Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964). https://doi.org/10.1145/363958.363994
Mogotlane, K.D., Dombeu, J.V.F.: Automatic conversion of relational databases into ontologies: a comparative analysis of protégé plug-ins performances. Int. J. Web Semant. Technol. 7(3/4), 21–40 (2016)
Poveda Villalón, M.: Ontology evaluation: a pitfall-based approach to ontology diagnosis. Ph.d. thesis, Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Informáticos, España, February 2016
Raad, J., Cruz, C.: A survey on ontology evaluation methods. In: Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, pp. 179–186 (2015). https://doi.org/10.5220/0005591001790186
Torres, M., Quintero, R., Levachkine, S., Moreno, M., Guzmán, G.: Geospatial information integration approach based on geographic context ontologies. In: Popovich, V.V., Schrenk, M., Claramunt, C., Korolenko, K.V. (eds.) IF&GIS. LNGC, pp. 177–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00304-2_12
Acknowledgments
This work has been partially supported by FEDER and the State Research Agency (AEI) of the Spanish Ministry of Economy and Competition under grant MERINET: TIN2016-76843-C4-2-R (AEI/FEDER, UE).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Puebla-Martínez, M.E., Perea-Ortega, J.M., Simón-Cuevas, A., Romero, F.P. (2018). Automatic Expansion of Spatial Ontologies for Geographic Information Retrieval. In: Medina, J., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and Information Science, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-91476-3_54
Download citation
DOI: https://doi.org/10.1007/978-3-319-91476-3_54
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-91475-6
Online ISBN: 978-3-319-91476-3
eBook Packages: Computer ScienceComputer Science (R0)