Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Maximum Colorful Cliques in Vertex-Colored Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10976))

Included in the following conference series:

  • 1456 Accesses

Abstract

In this paper we study the problem of finding a maximum colorful clique in vertex-colored graphs. Specifically, given a graph with colored vertices, we wish to find a clique containing the maximum number of colors. Note that this problem is harder than the maximum clique problem, which can be obtained as a special case when each vertex has a different color. In this paper we aim to give a dichotomy overview on the complexity of the maximum colorful clique problem. We first show that the problem is NP-hard even for several cases where the maximum clique problem is easy, such as complement graphs of bipartite permutation graphs, complement graphs of bipartite convex graphs, and unit disk graphs, and also for properly vertex-colored graphs. Next, we provide a XP parameterized algorithm and polynomial-time algorithms for classes of complement graphs of bipartite chain graphs, complete multipartite graphs and complement graphs of cycle graphs, which are our main contributions.

N. Kim Thang—Research supported by the ANR project OATA n\(^\mathrm{o}\) ANR-15-CE40-0015-01, Hadamard PGMO and DIM RFSI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akbari, S., Liaghat, V., Nikzad, A.: Colorful paths in vertex coloring of graphs. Electron. J. Comb. 18(1), P17 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Evaluation of ILP-based approaches for partitioning into colorful components. In: Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A. (eds.) SEA 2013. LNCS, vol. 7933, pp. 176–187. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38527-8_17

    Chapter  Google Scholar 

  3. Cohen, J., Manoussakis, Y., Pham, H., Tuza, Z.: Tropical matchings in vertex-colored graphs. In: Latin and American Algorithms, Graphs and Optimization Symposium (2017)

    Article  MathSciNet  Google Scholar 

  4. Cohen, J., Italiano, G.F., Manoussakis, Y., Nguyen, K.T., Pham, H.P.: Tropical paths in vertex-colored graphs. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 291–305. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71147-8_20

    Chapter  Google Scholar 

  5. Corel, E., Pitschi, F., Morgenstern, B.: A min-cut algorithm for the consistency problem in multiple sequence alignment. Bioinformatics 26(8), 1015–1021 (2010)

    Article  Google Scholar 

  6. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds for finding connected motifs in vertex-colored graphs. J. Comput. Syst. Sci. 77(4), 799–811 (2011)

    Article  MathSciNet  Google Scholar 

  7. Foucaud, F., Harutyunyan, A., Hell, P., Legay, S., Manoussakis, Y., Naserasr, R.: Tropical homomorphisms in vertex-coloured graphs. Discrete Appl. Math. 229, 1–168 (2017)

    Article  MathSciNet  Google Scholar 

  8. Italiano, G.F., Manoussakis, Y., Kim Thang, N., Pham, H.P.: Maximum colorful cycles in vertex-colored graphs. In: Fomin, F., Podolskii, V. (eds.) CSR 2018. LNCS, vol. 10846, pp. 106–117. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90530-3_10

    Chapter  Google Scholar 

  9. Li, H.: A generalization of the Gallai–Roy theorem. Graphs and Combinatorics 17(4), 681–685 (2001)

    Article  MathSciNet  Google Scholar 

  10. Lin, C.: Simple proofs of results on paths representing all colors in proper vertex-colorings. Graphs and Combinatorics 23(2), 201–203 (2007)

    Article  MathSciNet  Google Scholar 

  11. Marx, D.: Graph colouring problems and their applications in scheduling. Periodica Polytech. Electr. Eng. 48(1–2), 11–16 (2004)

    Google Scholar 

  12. Micali, S., Vazirani, V.V.: An \({O}(\sqrt{|V|} |{E}|)\) algorithm for finding maximum matching in general graphs. In: Proceedings of 21st Symposium on Foundations of Computer Science, pp. 17–27 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Phong Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Italiano, G.F., Manoussakis, Y., Kim Thang, N., Pham, H.P. (2018). Maximum Colorful Cliques in Vertex-Colored Graphs. In: Wang, L., Zhu, D. (eds) Computing and Combinatorics. COCOON 2018. Lecture Notes in Computer Science(), vol 10976. Springer, Cham. https://doi.org/10.1007/978-3-319-94776-1_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94776-1_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94775-4

  • Online ISBN: 978-3-319-94776-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics