Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Short Introduction to Phylogenetic Analysis of Molecular Sequence Data

  • Chapter
  • First Online:
Introduction to Bioinformatics in Microbiology

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 3483 Accesses

Abstract

Phylogeny is a model of the relationships between organisms, genes, protein, and other structures based on common ancestry. It is also used for epidemiological investigations and analysis of parallel evolution between host and parasite. Phylogenetic trees can be visualized as dendrograms or as radial trees. The most important information read from a phylogenetic tree is the location of the different monophyletic groups. The main types of model parameters needed to construct a tree from a given dataset are the tree shape and the substitution matrix. One of the four types of phylogenetic methods (maximum parsimony, neighbor joining, maximum likelihood, and MrBayes) can then be used to construct the tree. The strength of trees can be evaluated by bootstrap analysis. The major data formats used as input for phylogenetic programs are presented as well as the major program packages. Finally the reader is guided to the construct a neighbor joining tree on his own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Camin, J. H. & Sokal, R. R. 1965. A method for deducing branching sequences in phylogeny. Evolution 19, 311–326.

    Article  Google Scholar 

  • Cavalli-Sforza, L. L. & Edwards, A. W. F. 1967. Phylogenetic analysis: Models and estimation procedures. Am. J. Hum. Gen. 19, 233–257.

    CAS  Google Scholar 

  • Darwin, C. 1859. On the origin of species by means of natural selection or, the preservation of favoured races in the struggle for life. 1th ed. (reprinted 1998), Wordsworth, Ware.

    Google Scholar 

  • Eck, R. V. & Dayhoff, M. O. 1966. Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Spring, Maryland.

    Google Scholar 

  • Felsenstein, J. 2004. Inferring phylogenies. Sinauer Associates, Sunderland.

    Google Scholar 

  • Fitch WM, Margoliash E. 1967. Construction of phylogenetic trees. Science 20, 155(3760), 279–84.

    Article  CAS  Google Scholar 

  • Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology 59:307–321.

    Article  CAS  PubMed  Google Scholar 

  • Haeckel, E. 1875. Ziel und Wege der heutigen Entwichklingsgeschichte. Jena, Hermann Duft.

    Google Scholar 

  • Hennig, W. 1950. Grundzüge einer Theorie der phylogenetischen Systematik. Deutscher Zenteralverlag. Berlin.

    Google Scholar 

  • Hennig, W. 1966. Phylogenetic Systematics. Univ. Illinois Press, Urbana.

    Google Scholar 

  • Hillis, D. M. 1995. Approaches for assessing phylogenetic accuracy. Syst. Biol. 44, 3–16.

    Article  Google Scholar 

  • Huson, D. H. 1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G. & Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 3. 1870–1874.

    Article  CAS  Google Scholar 

  • Lamarck, J. B. 1809. Zoological Philosophy: An exposition with regard to the natural history of animals. Translated by H. Elliot. Macmillan, London 1914. Reprinted by University of Chicago Press, 1984.

    Google Scholar 

  • Nei, M. & Kumar, S. 2000. Molecular Evolution and Phylogenetics. Oxford.

    Google Scholar 

  • Olsen, G.J., Matsuda, H., Hagstrom, R. & Overbeek, R. 1994. fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput. Appl. Biosci. 10, 41–48.

    CAS  PubMed  Google Scholar 

  • Peplies, J., Kottmann, R., Ludwig, W., Glöckner, F.O. 2008. A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst. Appl. Microbiol. 31, 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Price, M. N., Dehal, P. S., & Arkin, A. P. 2010. FastTree 2 -- Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5: e9490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–25.

    Google Scholar 

  • Sneath, P. H. A. and Sokal, R. R. 1973. Numerical taxonomy. Freeman, San Francisco.

    Google Scholar 

  • Stamatakis, A. 2014. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies". Bioinformatics 30:1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Further Reading

  • Felsenstein, J. 2004. Inferring Phylogenies 2nd Edition. Sinauer, Sunderland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Christensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Christensen, H., Olsen, J.E. (2018). Short Introduction to Phylogenetic Analysis of Molecular Sequence Data. In: Christensen, H. (eds) Introduction to Bioinformatics in Microbiology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-319-99280-8_6

Download citation

Publish with us

Policies and ethics