Abstract
Pattern mining is one of the most pivotal steps in data mining; pattern mining immediately comes after the preprocessing phase of WUM. Pattern discovery deals with the sorted set of data items presented as part of the sequence. Pattern mining, users can recognize the web paths follow on a web site easily. The aim of this research discovers the patterns which are most relevant and interesting by using a Web usage mining process. The server web logs aids are the input to this process. Our target is to discover users’ behavior, who has visited the web sites for less number of times. We have enlightened a method for clustering, based on the pattern summaries. We have conducted intense experiments and the results are shown in this paper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benedek, A., Trousse, B.: Adaptation of Self-Organizing Maps for CBR case indexing. In: 27th Annual Conference of the Gesellschaft fur Klassifikation, Cottbus, Germany (March 2003)
Fayad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park (1996)
Giacometti, A.: Modèles hybrides de l’expertise, novembre, PhD Thesis, ENST Paris (1992) (in French)
Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Knowledge and Information Systems 1(1), 5–32 (1999)
Jaczynski, M.: Modèle et plate-forme à objets pour l’indexation des cas par situation comportementales: application à l’assistance à la navigation sur le web, décembre, PhD thesis, Université de Nice Sophia-Antipolis (1998) (in French)
Malek, M.: Un modèle hybride de mémoire pour le raisonnementà partir de cas, PhD thesis, Universitẽ Joseph Fourrier (Octobre 1996) (in French)
Masseglia, F., Poncelet, P., Cicchetti, R.: An efficient algorithm for web usage mining. Networking and Information Systems Journal (NIS) (April 2000)
Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)
Tanasa, D., Trousse, B.: Web access pattern discovery and analysis based on page classification and on indexing sessions with a generalised suffix tree. In: Proceedings of the 3rd International Workshop on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, pp. 62–72 (October 2001)
W3C. httpd- log files (1995), http://www.w3.org/Daemon/User/Config/Logging.html
Masseglia, F., Cathala, F., Poncelet, P.: The PSP Approach for Mining Sequential Patterns. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 176–184. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sudheer Reddy, K., Santhosh Kumar, C.N., Sitaramulu, V., Kantha Reddy, M. (2013). Discovering Web Usage Patterns - A Novel Approach. In: Satapathy, S., Udgata, S., Biswal, B. (eds) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA). Advances in Intelligent Systems and Computing, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35314-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-35314-7_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35313-0
Online ISBN: 978-3-642-35314-7
eBook Packages: EngineeringEngineering (R0)