Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 199))

  • 2352 Accesses

Abstract

Pattern mining is one of the most pivotal steps in data mining; pattern mining immediately comes after the preprocessing phase of WUM. Pattern discovery deals with the sorted set of data items presented as part of the sequence. Pattern mining, users can recognize the web paths follow on a web site easily. The aim of this research discovers the patterns which are most relevant and interesting by using a Web usage mining process. The server web logs aids are the input to this process. Our target is to discover users’ behavior, who has visited the web sites for less number of times. We have enlightened a method for clustering, based on the pattern summaries. We have conducted intense experiments and the results are shown in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benedek, A., Trousse, B.: Adaptation of Self-Organizing Maps for CBR case indexing. In: 27th Annual Conference of the Gesellschaft fur Klassifikation, Cottbus, Germany (March 2003)

    Google Scholar 

  2. Fayad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park (1996)

    Google Scholar 

  3. Giacometti, A.: Modèles hybrides de l’expertise, novembre, PhD Thesis, ENST Paris (1992) (in French)

    Google Scholar 

  4. Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Knowledge and Information Systems 1(1), 5–32 (1999)

    Article  Google Scholar 

  5. Jaczynski, M.: Modèle et plate-forme à objets pour l’indexation des cas par situation comportementales: application à l’assistance à la navigation sur le web, décembre, PhD thesis, Université de Nice Sophia-Antipolis (1998) (in French)

    Google Scholar 

  6. Malek, M.: Un modèle hybride de mémoire pour le raisonnementà partir de cas, PhD thesis, Universitẽ Joseph Fourrier (Octobre 1996) (in French)

    Google Scholar 

  7. Masseglia, F., Poncelet, P., Cicchetti, R.: An efficient algorithm for web usage mining. Networking and Information Systems Journal (NIS) (April 2000)

    Google Scholar 

  8. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

    Google Scholar 

  9. Tanasa, D., Trousse, B.: Web access pattern discovery and analysis based on page classification and on indexing sessions with a generalised suffix tree. In: Proceedings of the 3rd International Workshop on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, pp. 62–72 (October 2001)

    Google Scholar 

  10. W3C. httpd- log files (1995), http://www.w3.org/Daemon/User/Config/Logging.html

  11. Masseglia, F., Cathala, F., Poncelet, P.: The PSP Approach for Mining Sequential Patterns. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 176–184. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sudheer Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sudheer Reddy, K., Santhosh Kumar, C.N., Sitaramulu, V., Kantha Reddy, M. (2013). Discovering Web Usage Patterns - A Novel Approach. In: Satapathy, S., Udgata, S., Biswal, B. (eds) Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA). Advances in Intelligent Systems and Computing, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35314-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35314-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35313-0

  • Online ISBN: 978-3-642-35314-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics