Abstract
In this paper, we study collective additive tree spanners for families of graphs enjoying special Robertson-Seymour’s tree-decompositions, and demonstrate interesting consequences of obtained results. It is known that if a graph G has a multiplicative tree t-spanner, then G admits a Robertson-Seymour’s tree-decomposition with bags of radius at most ⌈t/2⌉ in G. We use this to demonstrate that there is a polynomial time algorithm that, given an n-vertex graph G admitting a multiplicative tree t-spanner, constructs a system of at most log2 n collective additive tree O(tlogn)-spanners of G. That is, with a slight increase in the number of trees and in the stretch, one can “turn” a multiplicative tree spanner into a small set of collective additive tree spanners. We extend this result by showing that , for every fixed k, there is a polynomial time algorithm that, given an n-vertex graph G admitting a multiplicative t-spanner with tree-width k − 1, constructs a system of at most k(1 + log2 n) collective additive tree O(tlogn)-spanners of G.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In: FOCS 1996, pp. 184–193 (1996)
Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog-competitive algorithm for metrical task systems. In: STOC 1997, pp. 711–719 (1997)
Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Disc. Math. 8, 359–387 (1995)
Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.A.: Approximating a finite metric by a small number of tree metrics. In: FOCS 1998, pp. 379–388 (1998)
Chew, L.P.: There are planar graphs almost as good as the complete graph. J. of Comp. and Sys. Sci. 39, 205–219 (1989)
Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Math., vol. 173. Springer (2000)
Dourisboure, Y., Dragan, F.F., Gavoille, C., Yan, C.: Spanners for bounded tree-length graphs. Theor. Comput. Sci. 383, 34–44 (2007)
Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Disc. Math. 307, 2008–2029 (2007)
Dragan, F.F., Abu-Ata, M.: Collective Additive Tree Spanners of Bounded Tree- Breadth Graphs with Generalizations and Consequences (Full version of this extended abstract), CoRR abs/1207.2506 (2012)
Dragan, F.F., Fomin, F.V., Golovach, P.A.: Spanners in sparse graphs. J. Comput. Syst. Sci. 77, 1108–1119 (2011)
Dragan, F.F., Köhler, E.: An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp. 171–183. Springer, Heidelberg (2011)
Dragan, F.F., Yan, C.: Collective Tree Spanners in Graphs with Bounded Parameters. Algorithmica 57, 22–43 (2010)
Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM J. Disc. Math. 20, 241–260 (2006)
Elkin, M., Emek, Y., Spielman, D.A., Teng, S.H.: Lower-stretch spanning trees. SIAM J. Comput. 38, 608–628 (2008)
Elkin, M., Peleg, D.: Approximating k-spanner problems for k ≥ 2. Theor. Comput. Sci. 337, 249–277 (2005)
Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted graphs. SIAM J. Comput. 38, 1761–1781 (2008)
Fakcharoenphol, F., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69, 485–497 (2004)
Gupta, A., Kumar, A., Rastogi, R.: Traveling with a pez dispenser (or, routing issues in mpls). SIAM J. Comput. 34, 453–474 (2004)
Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)
Lokshtanov, D.: On the complexity of computing tree-length. Disc. Appl. Math. 158, 820–827 (2010)
Peleg, D.: Low Stretch Spanning Trees. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 68–80. Springer, Heidelberg (2002)
Peleg, D., Reshef, E.: Low complexity variants of the arrow distributed directory. J. Comput. System Sci. 63, 474–485 (2001)
Peleg, D., Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)
Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18, 740–747 (1989)
Peleg, D., Upfal, E.: A tradeoff between space and efficiency for routing tables (extended abstract). In: STOC 1988, pp. 43–52 (1988)
Prisner, E.: Distance Approximating Spanning Trees. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 499–510. Springer, Heidelberg (1997)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. of Algorithms 7, 309–322 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dragan, F.F., Abu-Ata, M. (2013). Collective Additive Tree Spanners of Bounded Tree-Breadth Graphs with Generalizations and Consequences. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds) SOFSEM 2013: Theory and Practice of Computer Science. SOFSEM 2013. Lecture Notes in Computer Science, vol 7741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35843-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-35843-2_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-35842-5
Online ISBN: 978-3-642-35843-2
eBook Packages: Computer ScienceComputer Science (R0)