Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Collective Additive Tree Spanners of Bounded Tree-Breadth Graphs with Generalizations and Consequences

  • Conference paper
SOFSEM 2013: Theory and Practice of Computer Science (SOFSEM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7741))

Abstract

In this paper, we study collective additive tree spanners for families of graphs enjoying special Robertson-Seymour’s tree-decompositions, and demonstrate interesting consequences of obtained results. It is known that if a graph G has a multiplicative tree t-spanner, then G admits a Robertson-Seymour’s tree-decomposition with bags of radius at most ⌈t/2⌉ in G. We use this to demonstrate that there is a polynomial time algorithm that, given an n-vertex graph G admitting a multiplicative tree t-spanner, constructs a system of at most log2 n collective additive tree O(tlogn)-spanners of G. That is, with a slight increase in the number of trees and in the stretch, one can “turn” a multiplicative tree spanner into a small set of collective additive tree spanners. We extend this result by showing that , for every fixed k, there is a polynomial time algorithm that, given an n-vertex graph G admitting a multiplicative t-spanner with tree-width k − 1, constructs a system of at most k(1 + log2 n) collective additive tree O(tlogn)-spanners of G.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In: FOCS 1996, pp. 184–193 (1996)

    Google Scholar 

  2. Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog-competitive algorithm for metrical task systems. In: STOC 1997, pp. 711–719 (1997)

    Google Scholar 

  3. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Disc. Math. 8, 359–387 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.A.: Approximating a finite metric by a small number of tree metrics. In: FOCS 1998, pp. 379–388 (1998)

    Google Scholar 

  5. Chew, L.P.: There are planar graphs almost as good as the complete graph. J. of Comp. and Sys. Sci. 39, 205–219 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diestel, R.: Graph Theory, 2nd edn. Graduate Texts in Math., vol. 173. Springer (2000)

    Google Scholar 

  7. Dourisboure, Y., Dragan, F.F., Gavoille, C., Yan, C.: Spanners for bounded tree-length graphs. Theor. Comput. Sci. 383, 34–44 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dourisboure, Y., Gavoille, C.: Tree-decompositions with bags of small diameter. Disc. Math. 307, 2008–2029 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dragan, F.F., Abu-Ata, M.: Collective Additive Tree Spanners of Bounded Tree- Breadth Graphs with Generalizations and Consequences (Full version of this extended abstract), CoRR abs/1207.2506 (2012)

    Google Scholar 

  10. Dragan, F.F., Fomin, F.V., Golovach, P.A.: Spanners in sparse graphs. J. Comput. Syst. Sci. 77, 1108–1119 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dragan, F.F., Köhler, E.: An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds.) APPROX/RANDOM 2011. LNCS, vol. 6845, pp. 171–183. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Dragan, F.F., Yan, C.: Collective Tree Spanners in Graphs with Bounded Parameters. Algorithmica 57, 22–43 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dragan, F.F., Yan, C., Lomonosov, I.: Collective tree spanners of graphs. SIAM J. Disc. Math. 20, 241–260 (2006)

    Article  MathSciNet  Google Scholar 

  14. Elkin, M., Emek, Y., Spielman, D.A., Teng, S.H.: Lower-stretch spanning trees. SIAM J. Comput. 38, 608–628 (2008)

    Article  MathSciNet  Google Scholar 

  15. Elkin, M., Peleg, D.: Approximating k-spanner problems for k ≥ 2. Theor. Comput. Sci. 337, 249–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Emek, Y., Peleg, D.: Approximating minimum max-stretch spanning trees on unweighted graphs. SIAM J. Comput. 38, 1761–1781 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fakcharoenphol, F., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. J. Comput. Syst. Sci. 69, 485–497 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a pez dispenser (or, routing issues in mpls). SIAM J. Comput. 34, 453–474 (2004)

    Article  MathSciNet  Google Scholar 

  19. Liestman, A.L., Shermer, T.: Additive graph spanners. Networks 23, 343–364 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lokshtanov, D.: On the complexity of computing tree-length. Disc. Appl. Math. 158, 820–827 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Peleg, D.: Low Stretch Spanning Trees. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 68–80. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Peleg, D., Reshef, E.: Low complexity variants of the arrow distributed directory. J. Comput. System Sci. 63, 474–485 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peleg, D., Schäffer, A.A.: Graph Spanners. J. Graph Theory 13, 99–116 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18, 740–747 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peleg, D., Upfal, E.: A tradeoff between space and efficiency for routing tables (extended abstract). In: STOC 1988, pp. 43–52 (1988)

    Google Scholar 

  26. Prisner, E.: Distance Approximating Spanning Trees. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 499–510. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  27. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. of Algorithms 7, 309–322 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dragan, F.F., Abu-Ata, M. (2013). Collective Additive Tree Spanners of Bounded Tree-Breadth Graphs with Generalizations and Consequences. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds) SOFSEM 2013: Theory and Practice of Computer Science. SOFSEM 2013. Lecture Notes in Computer Science, vol 7741. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35843-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35843-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35842-5

  • Online ISBN: 978-3-642-35843-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics