Abstract
Many-objective optimization has been gaining increasing attention in the evolutionary multiobjective optimization community, and various approaches have been developed to solve many-objective problems in recent years. However, the existing empirically comparative studies are often restricted to only a few approaches on a handful of test problems. This paper provides a systematic comparison of eight representative approaches from the six angles to solve many-objective problems. The compared approaches are tested on four groups of well-defined continuous and combinatorial test functions, by three performance metrics as well as a visual observation in the decision space. We conclude that none of the approaches has a clear advantage over the others, although some of them are competitive on most of the problems. In addition, different search abilities of these approaches on the problems with different characteristics suggest a careful choice of approaches for solving a many-objective problem in hand.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)
Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation 19(1), 45–76 (2011)
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)
Corne, D.W., Knowles, J.D.: Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Proc. 9th Ann. Conf. Genetic and Evol. Comput., GECCO 2007, pp. 773–780 (2007)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K., Jain, H.: An improved NSGA-II procedure for many-objective optimization part I: solving problems with box constraints. KanGAL, Indian Institute of Technology, Tech. Rep. 2012009 (2012)
Deb, K., Mohan, M., Mishra, S.: Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation 13(4), 501–525 (2005)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145 (2005)
Farina, M., Amato, P.: On the optimal solution definition for many-criteria optimization problems. In: Proc. NAFIPS Fuzzy Information Processing Society 2002 Annual Meeting of the North American, pp. 233–238 (2002)
Hadka, D., Reed, P.: Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evol. Comput. (2012) (in press)
Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)
Hughes, E.J.: Multiple single objective Pareto sampling. In: Proc. Congress Evolutionary Computation CEC 2003, vol. 4, pp. 2678–2684 (2003)
Hughes, E.J.: Evolutionary many-objective optimisation: many once or one many? In: Proc. IEEE Congress Evolutionary Computation, CEC 2005, pp. 222–227 (2005)
Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., Nojima, Y.: Effectiveness of scalability improvement attempts on the performance of NSGA-II for many-objective problems. In: Proc. 10th Annual Conf. Genetic Evol. Comput., GECCO 2008, pp. 649–656 (2008)
Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short review. In: Proc. IEEE Congress Evolutionary Computation, CEC 2008, pp. 2419–2426 (2008)
Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 91–100. Springer, Heidelberg (2010)
Jaimes, A.L., Coello Coello, C.A.: Study of preference relations in many-objective optimization. In: Proc. 11th Annual Conf. Genetic Evol. Comput., GECCO 2009, pp. 611–618 (2009)
Khare, V., Yao, X., Deb, K.: Performance Scaling of Multi-objective Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003)
Köppen, M., Yoshida, K.: Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007)
Li, M., Yang, S., Zheng, J., Liu, X.: ETEA: A Euclidean minimum spanning tree-based evolutionary algorithm for multiobjective optimization. Evol. Comput. (2013) (in press)
Li, M., Zheng, J., Li, K., Yuan, Q., Shen, R.: Enhancing Diversity for Average Ranking Method in Evolutionary Many-Objective Optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 647–656. Springer, Heidelberg (2010)
Li, M., Zheng, J., Shen, R., Li, K., Yuan, Q.: A grid-based fitness strategy for evolutionary many-objective optimization. In: Proc. 12th Annual Conf. Genetic Evol. Comput., GECCO 2010, pp. 463–470 (2010)
Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Trans. Evol. Comput. 11(6), 770–784 (2007)
Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)
Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. (2013) (in press)
Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)
Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, M., Yang, S., Liu, X., Shen, R. (2013). A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol 7811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-37140-0_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37139-4
Online ISBN: 978-3-642-37140-0
eBook Packages: Computer ScienceComputer Science (R0)