Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7811))

Included in the following conference series:

Abstract

Many-objective optimization has been gaining increasing attention in the evolutionary multiobjective optimization community, and various approaches have been developed to solve many-objective problems in recent years. However, the existing empirically comparative studies are often restricted to only a few approaches on a handful of test problems. This paper provides a systematic comparison of eight representative approaches from the six angles to solve many-objective problems. The compared approaches are tested on four groups of well-defined continuous and combinatorial test functions, by three performance metrics as well as a visual observation in the decision space. We conclude that none of the approaches has a clear advantage over the others, although some of them are competitive on most of the problems. In addition, different search abilities of these approaches on the problems with different characteristics suggest a careful choice of approaches for solving a many-objective problem in hand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)

    Article  Google Scholar 

  2. Bader, J., Zitzler, E.: HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation 19(1), 45–76 (2011)

    Article  Google Scholar 

  3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  4. Corne, D.W., Knowles, J.D.: Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Proc. 9th Ann. Conf. Genetic and Evol. Comput., GECCO 2007, pp. 773–780 (2007)

    Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Deb, K., Jain, H.: An improved NSGA-II procedure for many-objective optimization part I: solving problems with box constraints. KanGAL, Indian Institute of Technology, Tech. Rep. 2012009 (2012)

    Google Scholar 

  7. Deb, K., Mohan, M., Mishra, S.: Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evolutionary Computation 13(4), 501–525 (2005)

    Article  Google Scholar 

  8. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145 (2005)

    Google Scholar 

  9. Farina, M., Amato, P.: On the optimal solution definition for many-criteria optimization problems. In: Proc. NAFIPS Fuzzy Information Processing Society 2002 Annual Meeting of the North American, pp. 233–238 (2002)

    Google Scholar 

  10. Hadka, D., Reed, P.: Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization. Evol. Comput. (2012) (in press)

    Google Scholar 

  11. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  12. Hughes, E.J.: Multiple single objective Pareto sampling. In: Proc. Congress Evolutionary Computation CEC 2003, vol. 4, pp. 2678–2684 (2003)

    Google Scholar 

  13. Hughes, E.J.: Evolutionary many-objective optimisation: many once or one many? In: Proc. IEEE Congress Evolutionary Computation, CEC 2005, pp. 222–227 (2005)

    Google Scholar 

  14. Ishibuchi, H., Tsukamoto, N., Hitotsuyanagi, Y., Nojima, Y.: Effectiveness of scalability improvement attempts on the performance of NSGA-II for many-objective problems. In: Proc. 10th Annual Conf. Genetic Evol. Comput., GECCO 2008, pp. 649–656 (2008)

    Google Scholar 

  15. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary many-objective optimization: A short review. In: Proc. IEEE Congress Evolutionary Computation, CEC 2008, pp. 2419–2426 (2008)

    Google Scholar 

  16. Ishibuchi, H., Hitotsuyanagi, Y., Tsukamoto, N., Nojima, Y.: Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 91–100. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Jaimes, A.L., Coello Coello, C.A.: Study of preference relations in many-objective optimization. In: Proc. 11th Annual Conf. Genetic Evol. Comput., GECCO 2009, pp. 611–618 (2009)

    Google Scholar 

  18. Khare, V., Yao, X., Deb, K.: Performance Scaling of Multi-objective Evolutionary Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Köppen, M., Yoshida, K.: Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 727–741. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Li, M., Yang, S., Zheng, J., Liu, X.: ETEA: A Euclidean minimum spanning tree-based evolutionary algorithm for multiobjective optimization. Evol. Comput. (2013) (in press)

    Google Scholar 

  21. Li, M., Zheng, J., Li, K., Yuan, Q., Shen, R.: Enhancing Diversity for Average Ranking Method in Evolutionary Many-Objective Optimization. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 647–656. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Li, M., Zheng, J., Shen, R., Li, K., Yuan, Q.: A grid-based fitness strategy for evolutionary many-objective optimization. In: Proc. 12th Annual Conf. Genetic Evol. Comput., GECCO 2010, pp. 463–470 (2010)

    Google Scholar 

  23. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Trans. Evol. Comput. 11(6), 770–784 (2007)

    Article  Google Scholar 

  24. Wagner, T., Beume, N., Naujoks, B.: Pareto-, Aggregation-, and Indicator-Based Methods in Many-Objective Optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Yang, S., Li, M., Liu, X., Zheng, J.: A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. (2013) (in press)

    Google Scholar 

  26. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  27. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  28. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, M., Yang, S., Liu, X., Shen, R. (2013). A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol 7811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37140-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37139-4

  • Online ISBN: 978-3-642-37140-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics