Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Scale and Edge Detection with Topological Derivatives

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7893))

  • 3733 Accesses

Abstract

A typical task of image segmentation is to partition a given image into regions of homogeneous property. In this paper we focus on the problem of further detecting scales of discontinuities of the image. The approach uses a recently developed iterative numerical algorithm for minimizing the Mumford-Shah functional which is based on topological derivatives. For the scale selection we use a squared norm of the gradient at edge points. During the iteration progress, the square norm, as a function varied with iteration numbers, provides information about different scales of the discontinuity sets. For realistic image data, the graph of the norm function is regularized by using total variation minimization to provide stable separation. We present the details of the algorithm and document various numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auroux, D., Belaid, L.J., Masmoudi, M.: A topological asymptotic analysis for the regularized grey-level image classification problem. Math. Model. Numer. Anal. 41(3) (2007)

    Google Scholar 

  3. Auroux, D., Masmoudi, M.: Image processing by topological asymptotic expansion. J. Math. Imaging Vision 33(2) (2009)

    Google Scholar 

  4. Chambolle, A.: Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math. 55(3), 827–863 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vision 20(1-2), 89–97 (2004)

    MathSciNet  Google Scholar 

  6. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, T., Vese, L.: Active Contours without Edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  8. Davies, P.L., Kovac, A.: Local extremes, runs, strings and multiresolution. Ann. Statist. 29(1), 1–65 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feijóo, R.A., Novotny, A., Padra, C., Taroco, E.: The topological derivative for the Poisson problem. Math. Mod. Meth. Appl. Sci. 13(12), 1825–1844 (2003)

    Article  MATH  Google Scholar 

  10. Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: The elasticity case. SIAM J. Control Optimiz. 39(6), 1756–1778 (2000)

    Article  MathSciNet  Google Scholar 

  11. Grasmair, M.: The equivalence of the taut string algorithm and BV-regularization. J. Math. Imaging Vision 27(1), 59–66 (2007)

    Article  MathSciNet  Google Scholar 

  12. Grasmair, M., Muszkieta, M., Scherzer, O.: An approach to the minimization of the Mumford–Shah functional using Γ-convergence and topological asymptotic expansion. Preprint on ArXiv, arXiv:1103.4722v1, University of Vienna, Austria (2011)

    Google Scholar 

  13. Jung, Y.M., Kang, S.H., Shen, J.: Multiphase Image Segmentation via Modica-Mortola Phase transitio. SIAM Applied Mathematics 67(5), 1213–1232 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kimmel, R., Sochen, N.A., Weickert, J. (eds.): Scale Space and PDE Methods in Computer Vision. LNCS, vol. 3459. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  15. Mammen, E., van de Geer, S.: Locally adaptive regression splines. Ann. Statist. 25(1), 387–413 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Muszkieta, M.: Optimal edge detection by topological asymptotic analysis. Math. Methods Appl. Sci. 19(11), 2127–2143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pöschl, C., Scherzer, O.: Characterization of minimizers of convex regularization functionals. In: Frames and Operator Theory in Analysis and Signal Processing. Contemp. Math., vol. 451, pp. 219–248. Amer. Math. Soc., Providence (2008)

    Chapter  Google Scholar 

  19. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1-4), 259–268 (1992)

    Article  MATH  Google Scholar 

  20. Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational methods in imaging. In: Applied Mathematical Sciences, vol. 167. Springer, New York (2009)

    Google Scholar 

  21. Shen, J.: A stochastic-variational model for Soft Mumford-Shah segmentation. In: International Journal of Biomedical Imaging, ID92329 (2006)

    Google Scholar 

  22. Sokołowski, J., Żochowski, A.: On topological derivative in shape optimization. SIAM J. Control Optimiz 37(4), 1251–1272 (1999)

    Article  MATH  Google Scholar 

  23. Steidl, G., Didas, S., Neumann, J.: Relations between higher order TV regularization and support vector regression. In: [14], pp. 515–527 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, G., Grasmair, M., Kang, S.H., Scherzer, O. (2013). Scale and Edge Detection with Topological Derivatives. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2013. Lecture Notes in Computer Science, vol 7893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38267-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38267-3_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38266-6

  • Online ISBN: 978-3-642-38267-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics