Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Key-Leakage Resilient Revoke Scheme Resisting Pirates 2.0 in Bounded Leakage Model

  • Conference paper
Progress in Cryptology – AFRICACRYPT 2013 (AFRICACRYPT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7918))

Included in the following conference series:

Abstract

Trace and revoke schemes have been widely studied in theory and implemented in practice. In the first part of the paper, we construct a fully secure key-leakage resilient identity-based revoke scheme. In order to achieve this goal, we first employ the dual system encryption technique to directly prove the security of a variant of the BBG − WIBE scheme under known assumptions (and thus avoid a loss of an exponential factor in hierarchical depth in the classical method of reducing the adaptive security of WIBE to the adaptive security of the underlying HIBE). We then modify this scheme to achieve a fully secure key-leakage resilient WIBE scheme. Finally, by using a transformation from a WIBE scheme to a revoke scheme, we propose the first fully secure key-leakage resilient identity-based revoke scheme.

In the classical model of traitor tracing, one assumes that a traitor contributes its entire secret key to build a pirate decoder. However, new practical scenarios of pirate has been considered, namely Pirate Evolution Attacks at Crypto 2007 and Pirates 2.0 at Eurocrypt 2009, in which pirate decoders could be built from sub-keys of users. The key notion in Pirates 2.0 is the anonymity level of traitors: they can rest assured to remain anonymous when each of them only contributes a very small fraction of its secret key by using a public extraction function. This scenario encourages dishonest users to participate in collusion and the size of collusion could become very large, possibly beyond the considered threshold in the classical model. In the second part of the paper, we show that our key-leakage resilient identity-based revoke scheme is immune to Pirates 2.0 in some special forms in bounded leakage model. It thus gives an interesting and rather surprised connection between the rich domain of key-leakage resilient cryptography and Pirates 2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdalla, M., Birkett, J., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Schuldt, J.C.N., Smart, N.P.: Wildcarded identity-based encryption. Journal of Cryptology 24(1), 42–82 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.: Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Abdalla, M., Dent, A.W., Malone-Lee, J., Neven, G., Phan, D.H., Smart, N.P.: Identity-based traitor tracing. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 361–376. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Berkovits, S.: How to broadcast a secret. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991)

    Chapter  Google Scholar 

  6. Billet, O., Phan, D.H.: Traitors collaborating in public: Pirates 2.0. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 189–205. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In: 51st FOCS Annual Symposium on Foundations of Computer Sciencei, pp. 501–510. IEEE Computer Society Press (2010)

    Google Scholar 

  8. Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

    Google Scholar 

  10. D’Arco, P., Perez del Pozo, A.L.: Fighting Pirates 2.0. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 359–376. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. D’Arco, P., del Pozo, A.L.P.: Toward tracing and revoking schemes secure against collusion and any form of secret information leakage. International Journal of Information Security 12 (2013)

    Google Scholar 

  12. Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly secure password protocols in the bounded retrieval model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 225–244. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 100–115. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In: 48th FOCS Annual Symposium on Foundations of Computer Science, pp. 227–237. IEEE Computer Society Press (October 2007)

    Google Scholar 

  16. Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: 49th Annual Symposium on Foundations of Computer Science, pp. 293–302. IEEE Computer Society Press (October 2008)

    Google Scholar 

  17. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  18. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Renner, R.S., Wolf, S.: Simple and Tight Bounds for Information Reconciliation and Privacy Amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 199–216. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Kiayias, A., Pehlivanoglu, S.: Pirate evolution: How to make the most of your traitor keys. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 448–465. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Lewko, A., Waters, B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Micali, S., Reyzin, L.: Physically observable cryptography (extended abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  27. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Phan, D.H., Trinh, V.C.: Identity-based trace and revoke schemes. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 204–221. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Phan, D.H., Trinh, V.C.: Key-Leakage Resilient Revoke Scheme Resisting Pirates 2. Full version available at, http://www.di.ens.fr/users/phan/2013-africa.pdf

  30. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  32. Zhao, X., Zhang, F.: Traitor tracing against public collaboration. In: Bao, F., Weng, J. (eds.) ISPEC 2011. LNCS, vol. 6672, pp. 302–316. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Phan, D.H., Trinh, V.C. (2013). Key-Leakage Resilient Revoke Scheme Resisting Pirates 2.0 in Bounded Leakage Model. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds) Progress in Cryptology – AFRICACRYPT 2013. AFRICACRYPT 2013. Lecture Notes in Computer Science, vol 7918. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38553-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38553-7_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38552-0

  • Online ISBN: 978-3-642-38553-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics