Abstract
Mean-Shift tracking is a popular algorithm for object tracking since it is easy to implement and it is fast and robust. In this paper, we address the problem of scale adaptation of the Hellinger distance based Mean-Shift tracker.
We start from a theoretical derivation of scale estimation in the Mean-Shift framework. To make the scale estimation robust and suitable for tracking, we introduce regularization terms that counter two major problem: (i) scale expansion caused by background clutter and (ii) scale implosion on self-similar objects. To further robustify the scale estimate, it is validated by a forward-backward consistency check.
The proposed Mean-shift tracker with scale selection is compared with recent state-of-the-art algorithms on a dataset of 48 public color sequences and it achieved excellent results.
Chapter PDF
Similar content being viewed by others
References
Bradski, G.R.: Computer Vision Face Tracking For Use in a Perceptual User Interface. Intel Technology Journal Q2 (1998)
Collins, R.T.: Mean-shift blob tracking through scale space. In: Computer Vision and Pattern Recognition, pp. 234–240. IEEE Computer Society (2003)
Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift, pp. 142–149 (2000)
Fukunaga, K., Hostetler, L.: The estimation of the gradient of a density function, with applications in pattern recognition. Information Theory 21(1), 32–40 (1975)
Hare, S., Saffari, A., Torr, P.: Struck: Structured output tracking with kernels. In: International Conference Computer Vision, pp. 263–270 (November 2011)
Kalal, Z., Matas, J., Mikolajczyk, K.: P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints. In: Conference on Computer Vision and Pattern Recognition (2010)
Klein, D.A., Schulz, D., Frintrop, S., Cremers, A.B.: Adaptive real-time video-tracking for arbitrary objects. In: Intelligent Robots and Systems, pp. 772–777 (October 2010)
Liang, D., Huang, Q., Jiang, S., Yao, H., Gao, W.: Mean-shift blob tracking with adaptive feature selection and scale adaptation. In: International Conference Image Processing (2007)
Ning, J., Zhang, L., Zhang, D., Wu, C.: Robust mean-shift tracking with corrected background-weighted histogram. Computer Vision, IET 6(1), 62–69 (2012)
Ning, J., Zhang, L., Zhang, D., Wu, C.: Scale and orientation adaptive mean shift tracking. Computer Vision, IET 6(1), 52–61 (2012)
Ning, J., Zhang, L., Zhang, D., Wu, C.: Scale and orientation adaptive mean shift tracking. Computer Vision, IET 6(1), 52–61 (2012)
Pu, J.-X., Peng, N.-S.: Adaptive kernel based tracking using mean-shift. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4141, pp. 394–403. Springer, Heidelberg (2006)
ÄŒehovin, L., Kristan, M., Leonardis, A.: An adaptive coupled-layer visual model for robust visual tracking. In: 13th International Conference on Computer Vision (November 2011)
Yang, C., Duraiswami, R., Davis, L.: Efficient mean-shift tracking via a new similarity measure. In: Computer Vision and Pattern Recognition, vol. 1, pp. 176–183 (June 2005)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Zhao, C., Knight, A., Reid, I.: Target tracking using mean-shift and affine structure. In: ICPR, pp. 1–5 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vojir, T., Noskova, J., Matas, J. (2013). Robust Scale-Adaptive Mean-Shift for Tracking. In: Kämäräinen, JK., Koskela, M. (eds) Image Analysis. SCIA 2013. Lecture Notes in Computer Science, vol 7944. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38886-6_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-38886-6_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-38885-9
Online ISBN: 978-3-642-38886-6
eBook Packages: Computer ScienceComputer Science (R0)