Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7070))

Abstract

We reminisce and discuss applications of algorithmic probability to a wide range of problems in artificial intelligence, philosophy and technological society. We propose that Solomonoff has effectively axiomatized the field of artificial intelligence, therefore establishing it as a rigorous scientific discipline. We also relate to our own work in incremental machine learning and philosophy of complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Solomonoff, R.J.: Progress in incremental machine learning. Technical Report IDSIA-16-03, IDSIA, Lugano, Switzerland (2003)

    Google Scholar 

  2. Chaitin, G.J.: A theory of program size formally identical to information theory. J. ACM 22, 329–340 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Solomonoff, R.J.: An inductive inference machine. Dartmouth Summer Research Project on Artificial Intelligence (1956) A Privately Circulated Report

    Google Scholar 

  4. Solomonoff, R.J.: An inductive inference machine. In: IRE National Convention Record, Section on Information Theory, Part 2, New York, USA, pp. 56–62 (1957)

    Google Scholar 

  5. Solomonoff, R.J.: A formal theory of inductive inference, part i. Information and Control 7(1), 1–22 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Solomonoff, R.J.: A formal theory of inductive inference, part ii. Information and Control 7(2), 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  7. Solomonoff, R.J.: Three kinds of probabilistic induction: Universal distributions and convergence theorems. The Computer Journal 51(5), 566–570 (2008); Christopher Stewart Wallace, memorial special issue (1933-2004)

    Google Scholar 

  8. Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)

    Google Scholar 

  9. Solomonoff, R.J.: Algorithmic probability: Theory and applications. In: Dehmer, M., Emmert-Streib, F. (eds.) Information Theory and Statistical Learning, pp. 1–23. Springer Science+Business Media, N.Y. (2009)

    Google Scholar 

  10. Solomonoff, R.J.: Complexity-based induction systems: Comparisons and convergence theorems. IEEE Trans. on Information Theory IT-24(4), 422–432 (1978)

    Article  MathSciNet  Google Scholar 

  11. Solomonoff, R.J.: Optimum sequential search. Technical report, Oxbridge Research, Cambridge, Mass., USA (1984)

    Google Scholar 

  12. Solomonoff, R.J.: Algorithmic Probability – Its Discovery – Its Properties and Application to Strong AI. In: Randomness Through Computation: Some Answers, More Questions, pp. 149–157. World Scientific Publishing Company (2011)

    Google Scholar 

  13. Solomonoff, R.J.: A system for incremental learning based on algorithmic probability. In: Proceedings of the Sixth Israeli Conference on Artificial Intelligence, Tel Aviv, Israel, pp. 515–527 (1989)

    Google Scholar 

  14. Rathmanner, S., Hutter, M.: A philosophical treatise of universal induction. Entropy 13(6), 1076–1136 (2011)

    Article  MathSciNet  Google Scholar 

  15. Davis, M.: The Universal Computer: The Road from Leibniz to Turing. W. W. Norton & Company (2000)

    Google Scholar 

  16. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society s2-42(1), 230–265 (1937)

    Article  MathSciNet  Google Scholar 

  17. Dowe, D.L.: MML, hybrid Bayesian network graphical models, statistical consistency, invariance and uniqueness. In: Handbook of the Philosophy of Science (HPS ). Philosophy of Statistics, vol. 7, pp. 901–982. Elsevier (2011)

    Google Scholar 

  18. Wallace, C.S., Boulton, D.M.: A information measure for classification. Computer Journal 11(2), 185–194 (1968)

    Article  MATH  Google Scholar 

  19. Wallace, C.S.: Statistical and Inductive Inference by Minimum Message Length. Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in coding and modeling (invited paper), pp. 699–716. IEEE Press, Piscataway (2000)

    Google Scholar 

  21. Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, NY (1998)

    Google Scholar 

  22. Dowe, D.L., Gardner, S., Oppy, G.: Bayes not bust! why simplicity is no problem for bayesians. The British Journal for the Philosophy of Science 58(4), 709–754 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wallace, C.S., Dowe, D.L.: Minimum message length and kolmogorov complexity. The Computer Journal 42(4), 270–283 (1999)

    Article  MATH  Google Scholar 

  24. Hernndez-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)

    Article  MathSciNet  Google Scholar 

  25. Özkural, E.: Towards heuristic algorithmic memory. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds.) AGI 2011. LNCS, vol. 6830, pp. 382–387. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  26. Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54, 211–256 (2004)

    Article  MATH  Google Scholar 

  27. Kelsey, R., Clinger, W., Rees, J.: Revised5 report on the algorithmic language scheme. Higher-Order and Symbolic Computation 11(1) (1998)

    Google Scholar 

  28. Olsson, J.R.: Inductive functional programming using incremental program transformation. Artificial Intelligence 74, 55–83 (1995)

    Article  Google Scholar 

  29. Muggleton, S., Page, C.: A learnability model for universal representations. In: Proceedings of the 4th International Workshop on Inductive Logic Programming, vol. 237, pp. 139–160. Citeseer (1994)

    Google Scholar 

  30. Ferri-Ramírez, C., Hernández-Orallo, J., Ramírez-Quintana, M.J.: Incremental learning of functional logic programs. In: Kuchen, H., Ueda, K. (eds.) FLOPS 2001. LNCS, vol. 2024, pp. 233–247. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  31. Bowers, A., Giraud-Carrier, C., Lloyd, J., Sa, E.: A knowledge representation framework for inductive learning (2001)

    Google Scholar 

  32. Kitzelmann, E.: Inductive programming: A survey of program synthesis techniques. In: Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 50–73. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  33. Looks, M.: Scalable estimation-of-distribution program evolution. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (2007)

    Google Scholar 

  34. Hutter, M.: Universal algorithmic intelligence: A mathematical top→down approach. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence. Cognitive Technologies, pp. 227–290. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  35. Goertzel, B.: Opencogprime: A cognitive synergy based architecture for artificial general intelligence. In: Baciu, G., Wang, Y., Yao, Y., Kinsner, W., Chan, K., Zadeh, L.A. (eds.) IEEE ICCI, pp. 60–68. IEEE Computer Society (2009)

    Google Scholar 

  36. Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2), 177–193 (2009)

    Article  Google Scholar 

  37. Solomonoff, R.J.: Machine learning - past and future. In: The Dartmouth Artificial Intelligence Conference, pp. 13–15 (2006)

    Google Scholar 

  38. Solomonoff, R.J.: The discovery of algorithmic probability. Journal of Computer and System Sciences 55(1), 73–88 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Bridges, D., Svozil, K.: Constructive mathematics and quantum physics. International Journal of Theoretical Physics 39, 503–515 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ă–zkural, E.: A compromise between reductionism and non-reductionism. In: Worldviews, Science and Us: Philosophy and Complexity. World Scientific Books (2007)

    Google Scholar 

  41. Quine, W.: Two dogmas of empiricism. The Philosophical Review 60, 20–43 (1951)

    Article  Google Scholar 

  42. Chaitin, G.J.: Two philosophical applications of algorithmic information theory. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 1–10. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  43. Solomonoff, R.J.: The time scale of artificial intelligence: Reflections on social effects. Human Systems Management 5, 149–153 (1985)

    Google Scholar 

  44. Glaskowsk, P.N.: Nvidia’s fermi: The first complete gpu computing architecture (2009)

    Google Scholar 

  45. Sandberg, A., Bostrom, N.: Whole brain emulation: A roadmap. Technical report, Future of Humanity Institute, Oxford University (2008)

    Google Scholar 

  46. Koomey, J.G., Berard, S., Sanchez, M., Wong, H.: Implications of historical trends in the electrical efficiency of computing. IEEE Annals of the History of Computing 33, 46–54 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ă–zkural, E. (2013). Diverse Consequences of Algorithmic Probability. In: Dowe, D.L. (eds) Algorithmic Probability and Friends. Bayesian Prediction and Artificial Intelligence. Lecture Notes in Computer Science, vol 7070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44958-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44958-1_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44957-4

  • Online ISBN: 978-3-642-44958-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics