Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent, and the Wrong-Key Randomization Hypothesis

  • Conference paper
Cryptography and Coding (IMACC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8308))

Included in the following conference series:

Abstract

We present a deterministic algorithm to find nonlinear S-box approximations, and a new nonlinear cryptanalytic technique; the “filtered” nonlinear attack, which achieves the lowest data complexity of any known-plaintext attack on reduced-round Serpent so far. We demonstrate that the Wrong-Key Randomization Hypothesis is not entirely valid for attacks on reduced-round Serpent which rely on linear cryptanalysis or a variant thereof, and survey the effects of this on existing attacks (including existing nonlinear attacks) on 11 and 12-round Serpent.

This work was carried out while the first author was a graduate student at the University of York.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  2. Matsui, M.: The first experimental cryptanalysis of the Data Encryption Standard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Heidelberg (1994)

    Google Scholar 

  3. Harpes, C., Kramer, G.G., Massey, J.L.: A generalization of linear cryptanalysis and the applicability of Matsui’s piling-up lemma. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Knudsen, L.R., Robshaw, M.: Non-linear approximations in linear cryptanalysis. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 224–236. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  5. Courtois, N.T.: Feistel schemes and bi-linear cryptanalysis (extended abstract). In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 23–40. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Courtois, N.: Feistel schemes and bi-linear cryptanalysis. Cryptology ePrint Archive, Report 2005/251 (August 2005), http://eprint.iacr.org/2005/251

  7. Tapiador, J.M.E., Clark, J.A., Hernandez-Castro, J.C.: Non-linear cryptanalysis revisited: Heuristic search for approximations to S-boxes. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 99–117. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Burwick, C., Coppersmith, D., D’Avignon, E., Gennaro, R., Halevi, S., Jutla, C.: Jr, S.M., O’Connor, L., Peyravian, M., Safford, D., Zunic, N.: MARS - a candidate cipher for AES. Technical report, IBM (September 1999), http://www.research.ibm.com/security/mars.pdf

  9. Clark, J., McLaughlin, J.: Nonlinear cryptanalysis of reduced-round Serpent and metaheuristic search for s-box approximations. Cryptology ePrint Archive, Report 2013/ (January 2013), http://eprint.iacr.org/2013/

  10. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 77–88. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Murphy, S.: The effectiveness of the linear hull effect. Technical Report RHUL-MA-2009-19, Royal Holloway, University of London (October 2009), http://www.isg.rhul.ac.uk/~sean/Linear_Hull_JMC-Rev2-llncs.pdf

  12. Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 303–322. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Collard, B., Standaert, F.X.: Experimenting linear cryptanalysis (2011), http://perso.uclouvain.be/fstandae/PUBLIS/90.pdf

  14. Nguyen, P.H., Wu, H., Wang, H.: Improving the algorithm 2 in multidimensional linear cryptanalysis. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 61–74. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Carlet, C.: Boolean functions for cryptography and error-correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, Cambridge (2010), The chapter is downloadable from http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf .

    Google Scholar 

  16. Kunz, H.: On the equivalence between one-dimensional discrete Walsh-Hadamard and multidimensional discrete Fourier transforms. IEEE Transactions on Computers C-28(3), 267–268 (1979)

    Google Scholar 

  17. Dunkelman, O.: Private communication

    Google Scholar 

  18. Biham, E., Dunkelman, O., Keller, N.: Linear cryptanalysis of reduced round Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Biham, E., Dunkelman, O., Keller, N.: Differential-linear cryptanalysis of Serpent. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Preneel, B., Rompay, B.V., Ors, S.B., Biryukov, A., Granboulan, L., Dottax, E., Dichtl, M., Schafheutle, M., Serf, P., Pyka, S., Biham, E., Barkan, E., Dunkelman, O., Stolin, J., Ciet, M., Quisquater, J.J., Sica, F., Raddum, H., Parker, M.: Performance of optimized implementations of the NESSIE primitives (version 2.0) (February 2003), http://www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf

  22. Hermelin, M., Nyberg, K.: Dependent linear approximations: The algorithm of Biryukov and others revisited. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 318–333. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems in cryptography and cryptanalysis. Cryptology ePrint Archive, Report 2011/475 (September 2011), http://eprint.iacr.org/2011/475

  24. Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and multiple linear cryptanalysis of reduced round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 51–65. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Collard, B., Standaert, F.X., Quisquater, J.J.: Improved and multiple linear cryptanalysis of reduced round Serpent - description of the linear approximations (2007), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.522&rep=rep1&type=pdf

  26. Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on 12-round Serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Selçuk, A.: On probability of success in linear and differential cryptanalysis. Journal of Cryptology 21, 131–147 (2008)

    Article  MATH  Google Scholar 

  28. Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  29. David, H.: Order Statistics. 2nd edn. Wiley (1981)

    Google Scholar 

  30. Leander, G.: Small scale variants of the block cipher PRESENT. Cryptology ePrint Archive, Report 2010/143 (March 2010), http://eprint.iacr.org/2010/143

  31. Cover, T., Thomas, J.: Elements of Information Theory. 2nd edn. Wiley-Interscience (2006)

    Google Scholar 

  32. Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced Encryption Standard, http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf

  33. Osvik, D.: Speeding up Serpent. In: Proceedings of the 3rd Advanced Encryption Standard Candidate Conference, AES 2000 (April 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McLaughlin, J., Clark, J.A. (2013). Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent, and the Wrong-Key Randomization Hypothesis. In: Stam, M. (eds) Cryptography and Coding. IMACC 2013. Lecture Notes in Computer Science, vol 8308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45239-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45239-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45238-3

  • Online ISBN: 978-3-642-45239-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics