Abstract
We present a deterministic algorithm to find nonlinear S-box approximations, and a new nonlinear cryptanalytic technique; the “filtered” nonlinear attack, which achieves the lowest data complexity of any known-plaintext attack on reduced-round Serpent so far. We demonstrate that the Wrong-Key Randomization Hypothesis is not entirely valid for attacks on reduced-round Serpent which rely on linear cryptanalysis or a variant thereof, and survey the effects of this on existing attacks (including existing nonlinear attacks) on 11 and 12-round Serpent.
This work was carried out while the first author was a graduate student at the University of York.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
Matsui, M.: The first experimental cryptanalysis of the Data Encryption Standard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Heidelberg (1994)
Harpes, C., Kramer, G.G., Massey, J.L.: A generalization of linear cryptanalysis and the applicability of Matsui’s piling-up lemma. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 24–38. Springer, Heidelberg (1995)
Knudsen, L.R., Robshaw, M.: Non-linear approximations in linear cryptanalysis. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 224–236. Springer, Heidelberg (1996)
Courtois, N.T.: Feistel schemes and bi-linear cryptanalysis (extended abstract). In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 23–40. Springer, Heidelberg (2004)
Courtois, N.: Feistel schemes and bi-linear cryptanalysis. Cryptology ePrint Archive, Report 2005/251 (August 2005), http://eprint.iacr.org/2005/251
Tapiador, J.M.E., Clark, J.A., Hernandez-Castro, J.C.: Non-linear cryptanalysis revisited: Heuristic search for approximations to S-boxes. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp. 99–117. Springer, Heidelberg (2007)
Burwick, C., Coppersmith, D., D’Avignon, E., Gennaro, R., Halevi, S., Jutla, C.: Jr, S.M., O’Connor, L., Peyravian, M., Safford, D., Zunic, N.: MARS - a candidate cipher for AES. Technical report, IBM (September 1999), http://www.research.ibm.com/security/mars.pdf
Clark, J., McLaughlin, J.: Nonlinear cryptanalysis of reduced-round Serpent and metaheuristic search for s-box approximations. Cryptology ePrint Archive, Report 2013/ (January 2013), http://eprint.iacr.org/2013/
Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improving the time complexity of Matsui’s linear cryptanalysis. In: Nam, K.-H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 77–88. Springer, Heidelberg (2007)
Murphy, S.: The effectiveness of the linear hull effect. Technical Report RHUL-MA-2009-19, Royal Holloway, University of London (October 2009), http://www.isg.rhul.ac.uk/~sean/Linear_Hull_JMC-Rev2-llncs.pdf
Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 303–322. Springer, Heidelberg (2011)
Collard, B., Standaert, F.X.: Experimenting linear cryptanalysis (2011), http://perso.uclouvain.be/fstandae/PUBLIS/90.pdf
Nguyen, P.H., Wu, H., Wang, H.: Improving the algorithm 2 in multidimensional linear cryptanalysis. In: Parampalli, U., Hawkes, P. (eds.) ACISP 2011. LNCS, vol. 6812, pp. 61–74. Springer, Heidelberg (2011)
Carlet, C.: Boolean functions for cryptography and error-correcting codes. In: Crama, Y., Hammer, P. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, Cambridge University Press, Cambridge (2010), The chapter is downloadable from http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf .
Kunz, H.: On the equivalence between one-dimensional discrete Walsh-Hadamard and multidimensional discrete Fourier transforms. IEEE Transactions on Computers C-28(3), 267–268 (1979)
Dunkelman, O.: Private communication
Biham, E., Dunkelman, O., Keller, N.: Linear cryptanalysis of reduced round Serpent. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 16–27. Springer, Heidelberg (2002)
Biham, E., Dunkelman, O., Keller, N.: Differential-linear cryptanalysis of Serpent. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 9–21. Springer, Heidelberg (2003)
Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002)
Preneel, B., Rompay, B.V., Ors, S.B., Biryukov, A., Granboulan, L., Dottax, E., Dichtl, M., Schafheutle, M., Serf, P., Pyka, S., Biham, E., Barkan, E., Dunkelman, O., Stolin, J., Ciet, M., Quisquater, J.J., Sica, F., Raddum, H., Parker, M.: Performance of optimized implementations of the NESSIE primitives (version 2.0) (February 2003), http://www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf
Hermelin, M., Nyberg, K.: Dependent linear approximations: The algorithm of Biryukov and others revisited. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 318–333. Springer, Heidelberg (2010)
Courtois, N., Hulme, D., Mourouzis, T.: Solving circuit optimisation problems in cryptography and cryptanalysis. Cryptology ePrint Archive, Report 2011/475 (September 2011), http://eprint.iacr.org/2011/475
Collard, B., Standaert, F.-X., Quisquater, J.-J.: Improved and multiple linear cryptanalysis of reduced round Serpent. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 51–65. Springer, Heidelberg (2008)
Collard, B., Standaert, F.X., Quisquater, J.J.: Improved and multiple linear cryptanalysis of reduced round Serpent - description of the linear approximations (2007), http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.522&rep=rep1&type=pdf
Dunkelman, O., Indesteege, S., Keller, N.: A differential-linear attack on 12-round Serpent. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 308–321. Springer, Heidelberg (2008)
Selçuk, A.: On probability of success in linear and differential cryptanalysis. Journal of Cryptology 21, 131–147 (2008)
Hermelin, M., Cho, J.Y., Nyberg, K.: Multidimensional extension of Matsui’s algorithm 2. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 209–227. Springer, Heidelberg (2009)
David, H.: Order Statistics. 2nd edn. Wiley (1981)
Leander, G.: Small scale variants of the block cipher PRESENT. Cryptology ePrint Archive, Report 2010/143 (March 2010), http://eprint.iacr.org/2010/143
Cover, T., Thomas, J.: Elements of Information Theory. 2nd edn. Wiley-Interscience (2006)
Anderson, R., Biham, E., Knudsen, L.: Serpent: A Proposal for the Advanced Encryption Standard, http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
Osvik, D.: Speeding up Serpent. In: Proceedings of the 3rd Advanced Encryption Standard Candidate Conference, AES 2000 (April 2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
McLaughlin, J., Clark, J.A. (2013). Filtered Nonlinear Cryptanalysis of Reduced-Round Serpent, and the Wrong-Key Randomization Hypothesis. In: Stam, M. (eds) Cryptography and Coding. IMACC 2013. Lecture Notes in Computer Science, vol 8308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45239-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-45239-0_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45238-3
Online ISBN: 978-3-642-45239-0
eBook Packages: Computer ScienceComputer Science (R0)