Abstract
Multi-linear secret-sharing schemes are the most common secret-sharing schemes. In these schemes the secret is composed of some field elements and the sharing is done by applying some fixed linear mapping on the field elements of the secret and some randomly chosen field elements. If the secret contains one field element, then the scheme is called linear. The importance of multi-linear schemes is that they provide a simple non-interactive mechanism for computing shares of linear combinations of previously shared secrets. Thus, they can be easily used in cryptographic protocols.
In this work we study the power of multi-linear secret-sharing schemes. On one hand, we prove that ideal multi-linear secret-sharing schemes in which the secret is composed of p field elements are more powerful than schemes in which the secret is composed of less than p field elements (for every prime p). On the other hand, we prove super-polynomial lower bounds on the share size in multi-linear secret-sharing schemes. Previously, such lower bounds were known only for linear schemes.
Chapter PDF
Similar content being viewed by others
References
Babai, L., Gál, A., Wigderson, A.: Superpolynomial lower bounds for monotone span programs. Combinatorica 19(3), 301–319 (1999)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: Proc. of the 20th ACM Symp. on the Theory of Computing, pp. 1–10 (1988)
Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)
Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes using linear block codes. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 67–79. Springer, Heidelberg (1993)
Blakley, G.R.: Safeguarding cryptographic keys. In: Merwin, R.E., Zanca, J.T., Smith, M. (eds.) Proc. of the 1979 AFIPS National Computer Conference. AFIPS Conference proceedings, vol. 48, pp. 313–317. AFIPS Press (1979)
Blundo, C., De Santis, A., Stinson, D.R., Vaccaro, U.: Graph decompositions and secret sharing schemes. J. Cryptology 8(1), 39–64 (1995)
Brickell, E.F.: Some ideal secret sharing schemes. Journal of Combin. Math. and Combin. Comput. 6, 105–113 (1989)
Brickell, E.F., Davenport, D.M.: On the classification of ideal secret sharing schemes. J. of Cryptology 4(73), 123–134 (1991)
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: Proc. of the 20th ACM Symp. on the Theory of Computing, pp. 11–19 (1988)
Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)
Csirmaz, L.: The size of a share must be large. J. of Cryptology 10(4), 223–231 (1997)
Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992)
van Dijk, M.: A linear construction of secret sharing schemes. Designs, Codes and Cryptography 12(2), 161–201 (1997)
Dowling, T.A.: A class of geometric lattices based on finite groups. J. Comb. Theory, Ser. B 14(1), 61–86 (1973)
Dowling, T.A.: A q-analog of the partition lattice. A Survey of Combinatorial Theory, 101–115 (1973)
Gál, A.: A characterization of span program size and improved lower bounds for monotone span programs. Computational Complexity 10(4), 277–296 (2001)
Gál, A., Pudlák, P.: A note on monotone complexity and the rank of matrices. Inform. Process. Lett. 87, 321–326 (2003)
Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proc. of the 13th ACM Conference on Computer and Communications Security, pp. 89–98 (2006)
Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Proc. of the IEEE Global Telecommunication Conf., Globecom 1987, pp. 99–102 (1987); Journal version: Multiple assignment scheme for sharing secret. J. of Cryptology 6(1), 15–20 (1993)
Karchmer, M., Wigderson, A.: On span programs. In: Proc. of the 8th IEEE Structure in Complexity Theory, pp. 102–111 (1993)
Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. on Information Theory 29(1), 35–41 (1983)
Linnik, Y.V.: On the least prime in an arithmetic progression I. the basic theorem. Rec. Math (Mat. Sbornik) N.S. 15(57), 139–178 (1944)
Linnik, Y.V.: On the least prime in an arithmetic progression II. the deuring-heilbronn phenomenon. Rec. Math (Mat. Sbornik) N.S. 15(57), 347–368 (1944)
Martí-Farré, J., Padró, C.: On secret sharing schemes, matroids and polymatroids. Journal of Mathematical Cryptology 4(2), 95–120 (2010)
Matúš, F.: Matroid representations by partitions. Discrete Mathematics 203, 169–194 (1999)
Milne, J.S.: Group theory, v3.12 (2012), http://www.jmilne.org/math/
Naor, M., Wool, A.: Access control and signatures via quorum secret sharing. In: 3rd ACM Conf. on Computer and Communications Security, pp. 157–167 (1996)
Oxley, J.G.: Matroid Theory, 2nd edn. Oxford University Press (2011)
Pendavingh, R.A., van Zwam, S.H.M.: Skew partial fields, multilinear representations of matroids, and a matrix tree theorem. Advances in Applied Mathematics 50(1), 201–227 (2013)
Semple, C., Whittle, G.: Partial fields and matroid representation. Advances in Applied Mathematics 17(2), 184–208 (1996)
Serre, J.-P.: Linear Representations of Finite Groups. Springer (1977)
Seymour, P.D.: On secret-sharing matroids. J. of Combinatorial Theory, Series B 56, 69–73 (1992)
Shamir, A.: How to share a secret. Communications of the ACM 22, 612–613 (1979)
Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized oblivious transfer. In: Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha, S.K. (eds.) ICDCN 2008. LNCS, vol. 4904, pp. 304–309. Springer, Heidelberg (2008)
Simonis, J., Ashikhmin, A.: Almost affine codes. Designs, Codes and Cryptography 14(2), 179–197 (1998)
Stinson, D.R.: Decomposition construction for secret sharing schemes. IEEE Trans. on Information Theory 40(1), 118–125 (1994)
Tassa, T.: Generalized oblivious transfer by secret sharing. Des. Codes Cryptography 58(1), 11–21 (2011)
van Dijk, M., Jackson, W.-A., Martin, K.M.: A general decomposition construction for incomplete secret sharing schemes. Des. Codes Cryptography 15(3), 301–321 (1998)
van Dijk, M., Kevenaar, T.A.M., Schrijen, G.J., Tuyls, P.: Improved constructions of secret sharing schemes by applying (lambda, omega)-decompositions. Inform. Process. Lett. 99(4), 154–157 (2006)
Vincent, G.: Les groupes lineaires finis sans point fixes. Commentarii Mathematici Helvetici 20, 117–171 (1947)
Waters, B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)
Wolf, J.A.: Spaces of Constant Curvature, 5th edn. Publish or Perish, Inc. (1984)
Xylouris, T.: On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-functions. Acta Arith. 150(1), 65–91 (2011)
Zassenhaus, H.: Uber endliche faskorper. Abhandlungen aus dem Mathematischen Seminar der Hamburgischen Universitat 11, 187–220 (1935)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 International Association for Cryptologic Research
About this paper
Cite this paper
Beimel, A., Ben-Efraim, A., Padró, C., Tyomkin, I. (2014). Multi-linear Secret-Sharing Schemes. In: Lindell, Y. (eds) Theory of Cryptography. TCC 2014. Lecture Notes in Computer Science, vol 8349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54242-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-54242-8_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-54241-1
Online ISBN: 978-3-642-54242-8
eBook Packages: Computer ScienceComputer Science (R0)