Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Argumentation Accelerated Reinforcement Learning for RoboCup Keepaway-Takeaway

  • Conference paper
Theory and Applications of Formal Argumentation (TAFA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8306))

  • 711 Accesses

Abstract

Multi-Agent Learning (MAL) is a complex problem, especially in real-time systems where both cooperative and competitive learning are involved. We study this problem in the RoboCup Soccer Keepaway-Takeaway game and propose Argumentation Accelerated Reinforcement Learning (AARL) for this game. AARL incorporates heuristics, represented by arguments in Value-Based Argumentation, into Reinforcement Learning (RL) by using Heuristically Accelerated RL techniques. We empirically study for a specific setting of the Keepaway-Takeaway game the suitability of AARL, in comparison with standard RL and hand-coded strategies, to meet the challenges of MAL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bench-Capon, T.: Persuasion in practical argument using value-based argumentation frameworks. J. Log. Comput. 13(3), 429–448 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bianchi, R.: Using heuristics to accelerate reinforcement learning algorithms. Ph.D. thesis, University of São Paulo (2004) (in Portuguese)

    Google Scholar 

  3. Bianchi, R., Ribeiro, C., Costa, A.: Accelerated autonumous learning by using heuristic selection of actions. Journal of Heuristics 14, 135–168 (2008)

    Article  Google Scholar 

  4. Bradtke, S., Duff, M.: Reinforcement learning methods for continuous-time markov decision problems. Advances in Neural Information Processing Systems 7, 393–400 (1995)

    Google Scholar 

  5. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent systems. In: The Proc. of AAAI (1998)

    Google Scholar 

  6. Devlin, S., Grzes, M., Kudenko, D.: An empirical study of potential-based reward shaping and advice in complex, multi-agent systems. Advances in Complex Systems 14, 251–278 (2011)

    Article  MathSciNet  Google Scholar 

  7. Dung, P.M.: On the acceptability of arugments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence 77(2), 321–357 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fan, X., Toni, F.: Argumentation dialogues for two-agent conflict resolution. In: Proc. of COMMA (2012)

    Google Scholar 

  9. Ferretti, E., Errecalde, M., García, A., Simari, G.: An application of defeasible logic programming to decision making in a robotic environment. In: LPNMR (2007)

    Google Scholar 

  10. Gao, Y., Toni, F., Craven, R.: Argumentation-based reinforcement learning for robocup soccer keepaway. In: Proc. of ECAI (2012)

    Google Scholar 

  11. Ghavamzadeh, M., Mahadevan, S., Makar, R.: Hierarchical multi-agent reinforcement learning. Autonomous Agents and Multi-Agent Systems 13, 197–229 (2006)

    Article  Google Scholar 

  12. Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. In: Machine Learning International Workshop Then Conference (2002)

    Google Scholar 

  13. Hu, J., Wellman, M.P.: Multiagent reinforcement learning: Theoretical framework and an algorithm. In: Proc. of ICML (1998)

    Google Scholar 

  14. Iscen, A., Erogul, U.: A new perspective to the keepaway soccer: The takers (short paper). In: Proc. of AAMAS (2008)

    Google Scholar 

  15. Lau, Q.P., Lee, M.L., Hsu, W.: Coordination guided reinforcement learning. In: Proc. of AAMAS (2012)

    Google Scholar 

  16. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In: Proc. of ICML (1994)

    Google Scholar 

  17. Min, H.Q., Zeng, J.A., Chen, J., Zhu, J.H.: A study of reinforcement learning in a new multiagent domain. In: 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (2008)

    Google Scholar 

  18. Mozina, M., Zabkar, J., Bratko, I.: Argument based machine learning. Artificial Intelligence 171, 922–937 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sen, S., Sekaran, M., Hale, J.: Learning to coordinate without sharing information. In: Proc. of AAAI (1994)

    Google Scholar 

  20. Singh, S.P., Sutton, R.S.: Reinforcement learning with replacing eligibility traces. Machine Learning 22, 123–158 (1996)

    MATH  Google Scholar 

  21. Stone, P., Sutton, R., Kuhlmann, G.: Reinforcement learning for robocup soccer keepaway. Adaptive Behavior 13, 165–188 (2005)

    Article  Google Scholar 

  22. Sutton, R., Barto, A.: Reinforcement Learning. MIT Press (1998)

    Google Scholar 

  23. Tambe, M., Jung, H.: The benefits of arguing in a team. AI Magzine 20(4), 85–92 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, Y., Toni, F. (2014). Argumentation Accelerated Reinforcement Learning for RoboCup Keepaway-Takeaway. In: Black, E., Modgil, S., Oren, N. (eds) Theory and Applications of Formal Argumentation. TAFA 2013. Lecture Notes in Computer Science(), vol 8306. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54373-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54373-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54372-2

  • Online ISBN: 978-3-642-54373-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics