Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Complexity of Paging Against a Probabilistic Adversary

  • Conference paper
  • First Online:
SOFSEM 2016: Theory and Practice of Computer Science (SOFSEM 2016)

Abstract

We consider deterministic online algorithms for paging. The offline version of the paging problem, in which the whole input is given in advance, is known to be easily solvable. If the input is random, chosen according to some known probability distribution, an \(\mathcal {O}\mathopen {}\left( \log k\right) \)-competitive algorithm exists. Moreover, there are distributions, where no algorithm can be better than \(\mathrm {\Omega }\mathopen {}\left( \log k\right) \)-competitive.

In this paper, we ask the question of what happens if it is known that the input is one from a set of \(\ell \) potential candidates, chosen according to some probability distribution. We present an \(\mathcal {O}\mathopen {}\left( \log \ell \right) \)-competitive algorithm, and show a matching lower bound.

The research is partially funded by SNF grant 200021–146372, VEGA grant 1/0979/12, and Deutsche Forschungsgemeinschaft grant BL511/10-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that unlike offline algorithms, in an online setting we usually ignore the running time of the algorithm.

References

  1. Albers, S.: Online algorithms: a survey. Math. Program. 97(1), 3–26 (2003)

    MATH  MathSciNet  Google Scholar 

  2. Bélády, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Syst. J. 5(2), 78–101 (1966)

    Article  Google Scholar 

  3. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica 11(1), 73–91 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the \(k\)-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York (1998)

    Google Scholar 

  7. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. J. Comput. Syst. Sci. 50(2), 244–258 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Boyar, J., Larsen, K.S., Nielsen, M.N.: The accommodating function: a generalization of the competitive ratio. SIAM J. Comput. 31(1), 233–258 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chou, A., Cooperstock, J., El-Yaniv, R., Klugerman, M., Leighton, T.: The statistical adversary allows optimal money-making trading strategies. In: Proceeding of SODA 1995, pp. 467–476. Society for Industrial and Applied Mathematics (1995)

    Google Scholar 

  10. Dobrev, S., Královič, R., Pardubská, D.: How much information about the future is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412(24), 2642–2656 (2011)

    Article  MATH  Google Scholar 

  12. Harel, D., Feldman, Y.: Algorithmics: The Spirit of Computing. Addison-Wesley, 3rd edn (2004)

    Google Scholar 

  13. Franaszek, P.A., Wagner, T.J.: Some distribution-free aspects of paging algorithm performance. J. ACM 21(1), 31–39 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Irani, S., Karlin, A.R.: On online computation. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, pp. 521–564. PWS Publishing Company (1997)

    Google Scholar 

  16. Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor. Inf. Appl. (RAIRO) 45(2), 249–267 (2011)

    Article  MATH  Google Scholar 

  17. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM J. Comput. 30(1), 300–317 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Pandurangan, G., Upfal, E.: Entropy-based bounds for online algorithms. ACM Trans. Algorithms 3(1), 1–19 (2007)

    Article  MathSciNet  Google Scholar 

  19. Raghavan, P.: A statistical adversary for on-line algorithms. DIMACS 7, 79–83 (1991)

    Google Scholar 

  20. Shedler, G.S., Tung, C.: Locality in page reference strings. SIAM J. Comput. 1, 218–241 (1972)

    Article  MATH  Google Scholar 

  21. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

  22. Fiat, A. (ed.): Online Algorithms 1996. LNCS, vol. 1442. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  23. Fiat, A., Woeginger, G.J.: Competitive odds and ends. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 385–394. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity (extended abstract). In: Proceeding of FOCS 1977, pp. 222–227. IEEE Computer Society (1977)

    Google Scholar 

  25. Young, N.E.: Bounding the diffuse adversary. In: Proceeding of SODA 1998, pp. 420–425. Society for Industrial and Applied Mathematics (1998)

    Google Scholar 

Download references

Acknowledgement

The authors would like to thank Hans-Joachim Böckenhauer for very valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Komm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dobrev, S., Hromkovič, J., Komm, D., Královič, R., Královič, R., Mömke, T. (2016). The Complexity of Paging Against a Probabilistic Adversary. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49192-8_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49191-1

  • Online ISBN: 978-3-662-49192-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics