Abstract
We consider deterministic online algorithms for paging. The offline version of the paging problem, in which the whole input is given in advance, is known to be easily solvable. If the input is random, chosen according to some known probability distribution, an \(\mathcal {O}\mathopen {}\left( \log k\right) \)-competitive algorithm exists. Moreover, there are distributions, where no algorithm can be better than \(\mathrm {\Omega }\mathopen {}\left( \log k\right) \)-competitive.
In this paper, we ask the question of what happens if it is known that the input is one from a set of \(\ell \) potential candidates, chosen according to some probability distribution. We present an \(\mathcal {O}\mathopen {}\left( \log \ell \right) \)-competitive algorithm, and show a matching lower bound.
The research is partially funded by SNF grant 200021–146372, VEGA grant 1/0979/12, and Deutsche Forschungsgemeinschaft grant BL511/10-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that unlike offline algorithms, in an online setting we usually ignore the running time of the algorithm.
References
Albers, S.: Online algorithms: a survey. Math. Program. 97(1), 3–26 (2003)
Bélády, L.A.: A study of replacement algorithms for virtual-storage computer. IBM Syst. J. 5(2), 78–101 (1966)
Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms. Algorithmica 11(1), 73–91 (1994)
Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)
Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the \(k\)-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)
Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, New York (1998)
Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. J. Comput. Syst. Sci. 50(2), 244–258 (1995)
Boyar, J., Larsen, K.S., Nielsen, M.N.: The accommodating function: a generalization of the competitive ratio. SIAM J. Comput. 31(1), 233–258 (2001)
Chou, A., Cooperstock, J., El-Yaniv, R., Klugerman, M., Leighton, T.: The statistical adversary allows optimal money-making trading strategies. In: Proceeding of SODA 1995, pp. 467–476. Society for Industrial and Applied Mathematics (1995)
Dobrev, S., Královič, R., Pardubská, D.: How much information about the future is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer, Heidelberg (2008)
Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412(24), 2642–2656 (2011)
Harel, D., Feldman, Y.: Algorithmics: The Spirit of Computing. Addison-Wesley, 3rd edn (2004)
Franaszek, P.A., Wagner, T.J.: Some distribution-free aspects of paging algorithm performance. J. ACM 21(1), 31–39 (1974)
Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36. Springer, Heidelberg (2010)
Irani, S., Karlin, A.R.: On online computation. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard Problems, pp. 521–564. PWS Publishing Company (1997)
Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor. Inf. Appl. (RAIRO) 45(2), 249–267 (2011)
Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM J. Comput. 30(1), 300–317 (2000)
Pandurangan, G., Upfal, E.: Entropy-based bounds for online algorithms. ACM Trans. Algorithms 3(1), 1–19 (2007)
Raghavan, P.: A statistical adversary for on-line algorithms. DIMACS 7, 79–83 (1991)
Shedler, G.S., Tung, C.: Locality in page reference strings. SIAM J. Comput. 1, 218–241 (1972)
Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28(2), 202–208 (1985)
Fiat, A. (ed.): Online Algorithms 1996. LNCS, vol. 1442. Springer, Heidelberg (1998)
Fiat, A., Woeginger, G.J.: Competitive odds and ends. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 385–394. Springer, Heidelberg (1998)
Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity (extended abstract). In: Proceeding of FOCS 1977, pp. 222–227. IEEE Computer Society (1977)
Young, N.E.: Bounding the diffuse adversary. In: Proceeding of SODA 1998, pp. 420–425. Society for Industrial and Applied Mathematics (1998)
Acknowledgement
The authors would like to thank Hans-Joachim Böckenhauer for very valuable discussions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dobrev, S., Hromkovič, J., Komm, D., Královič, R., Královič, R., Mömke, T. (2016). The Complexity of Paging Against a Probabilistic Adversary. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_22
Download citation
DOI: https://doi.org/10.1007/978-3-662-49192-8_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-49191-1
Online ISBN: 978-3-662-49192-8
eBook Packages: Computer ScienceComputer Science (R0)