Abstract
Upskilling is a fast-growing segment of the education economy [31]. Yet, there is little algorithmic work that focuses on crafting dedicated strategies to reach high-skill mastery. In this paper, we formalize AdUp, an iterative upskilling problem that combines mastery learning [49] and Zone of Proximal Development [7]. We extend our previous work [9] and design two solutions for AdUp: MOO and MAB. MOO is a multi-objective optimization approach that relies on Hill Climbing to adapt the difficulty of recommended tests to three objectives: learner’s predicted performance, aptitude, and skill gap. MAB is a meta approach based on Multi-Armed Bandits to learn the best combination of objectives to optimize at each iteration. We show how these solutions are combined with two common learner simulation models: BKT (KT-IDEM) [47] and Item Response Theory (IRT) [53]. Our simulation experiments demonstrate the necessity of leveraging all three objectives and the need to adapt the optimization objectives to the learner’s progression ability as MAB offers a higher mastery rate and a better final skill gain than MOO.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
References
Abdelrahman, G., Wang, Q.: Knowledge tracing with sequential key-value memory networks. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 175–184 (2019)
Abdelrahman, G., Wang, Q., Nunes, B.: Knowledge tracing: a survey. ACM Comput. Surv. 55(11), 1–37 (2023)
Abdi, S., Khosravi, H., Sadiq, S., Darvishi, A.: Open learner models for multi-activity educational systems. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds.) AIED 2021, Part II. LNCS (LNAI), vol. 12749, pp. 11–17. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78270-2_2
Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Sig. Process. Mag. 34(6), 26–38 (2017)
Badrinath, A., Wang, F., Pardos, Z.: pyBKT: an accessible python library of Bayesian knowledge tracing models. In: Proceedings of the 14th International Conference on Educational Data Mining, pp. 468–474 (2021)
Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. ACM Trans. Database Syst. (TODS) 33(4), 1–49 (2008)
Basawapatna, A.R., Repenning, A., Koh, K.H., Nickerson, H.: The zones of proximal flow: guiding students through a space of computational thinking skills and challenges. In: Proceedings of the Ninth Annual International ACM Conference on International Computing Education Research, pp. 67–74 (2013)
Birnbaum, A.: Some latent trait models and their use in inferring an examinee’s ability. In: Statistical Theories of Mental Test Scores (1968)
Bouarour, N., Benouaret, I., D’Ham, C., Amer-Yahia, S.: Adaptive test recommendation for mastery learning. In: Proceedings of the 2nd International Workshop on Data Systems Education: Bridging Education Practice with Education Research, pp. 18–23 (2023)
Bruffee, K.A.: Collaborative Learning: Higher Education, Interdependence, and the Authority of Knowledge. ERIC (1999)
Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006). https://doi.org/10.1007/11774303_17
Cen, H., Koedinger, K., Junker, B.: Comparing two IRT models for conjunctive skills. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 796–798. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7_111
Coetzee, D., Lim, S., Fox, A., Hartmann, B., Hearst, M.A.: Structuring interactions for large-scale synchronous peer learning. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 1139–1152 (2015)
Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User Adap. Inter. 4(4), 253–278 (1994)
Csikszentmihalyi, M.: Beyond Boredom and Anxiety: The Experience of Play in Work and Games. Jossey-Bass (1975)
David, Y.B., Segal, A., Gal, Y.: Sequencing educational content in classrooms using Bayesian knowledge tracing. In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge, pp. 354–363 (2016)
Davis, D., Chen, G., Hauff, C., Houben, G.J.: Activating learning at scale: a review of innovations in online learning strategies. Comput. Educ. 125, 327–344 (2018)
De Vin, L.J., Jacobsson, L., Odhe, J., Wickberg, A.: Lean production training for the manufacturing industry: experiences from Karlstad Lean Factory. Procedia Manuf. 11, 1019–1026 (2017)
Esfandiari, M., Wei, D., Amer-Yahia, S., Basu Roy, S.: Optimizing peer learning in online groups with affinities. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1216–1226 (2019)
Fischer, C., et al.: Mining big data in education: affordances and challenges. Rev. Res. Educ. 44(1), 130–160 (2020)
Gadiraju, U., Dietze, S.: Improving learning through achievement priming in crowdsourced information finding microtasks. In: Proceedings of the Seventh International Learning Analytics & Knowledge Conference, pp. 105–114. ACM (2017)
Gašević, D., Kovanović, V., Joksimović, S., Siemens, G.: Where is research on massive open online courses headed? A data analysis of the MOOC research initiative. Int. Rev. Res. Open Distrib. Learn. 15(5), 134–176 (2014)
Gong, Y., Beck, J.E., Heffernan, N.T.: Comparing knowledge tracing and performance factor analysis by using multiple model fitting procedures. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6094, pp. 35–44. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13388-6_8
Heffernan, N.T., Heffernan, C.L.: The assistments ecosystem: building a platform that brings scientists and teachers together for minimally invasive research on human learning and teaching. Int. J. Artif. Intell. Educ. 24(4), 470–497 (2014)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Huang, Z., et al.: Exploring multi-objective exercise recommendations in online education systems. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1261–1270 (2019)
Kelly, K., Wang, Y., Thompson, T., Heffernan, N.: Defining mastery: knowledge tracing versus n-consecutive correct responses. In: Student Modeling From Different Aspects, p. 39 (2016)
Kolb, D.A.: Experiential Learning: Experience as the Source of Learning and Development. Englewood Cliffs (1984)
Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation. Cambridge University Press (1991)
Lee, Y.W., Sawaki, Y.: Cognitive diagnosis approaches to language assessment: an overview. Lang. Assess. Q. 6(3), 172–189 (2009)
Li, L.: Reskilling and upskilling the future-ready workforce for industry 4.0 and beyond. Inf. Syst. Front., 1–16 (2022). https://doi.org/10.1007/s10796-022-10308-y
Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015)
Liu, Q., et al.: Exploiting cognitive structure for adaptive learning. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 627–635 (2019)
Lord, F.M.: Applications of Item Response Theory to Practical Testing Problems. Routledge (1980)
Mao, Y., et al.: Learning behavior-aware cognitive diagnosis for online education systems. In: Zeng, J., Qin, P., Jing, W., Song, X., Lu, Z. (eds.) ICPCSEE 2021. CCIS, vol. 1452, pp. 385–398. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5943-0_31
Matsubara, M., Borromeo, R.M., Amer-Yahia, S., Morishima, A.: Task assignment strategies for crowd worker ability improvement. Proc. ACM Hum. Comput. Interact. 5(CSCW2), 1–20 (2021)
Miller, A., Fisch, A., Dodge, J., Karimi, A.H., Bordes, A., Weston, J.: Key-value memory networks for directly reading documents. arXiv preprint arXiv:1606.03126 (2016)
Mincer, J.: On-the-job training: costs, returns, and some implications. J. Polit. Econ. 70(5, Part 2), 50–79 (1962)
Minn, S.: BKT-LSTM: efficient student modeling for knowledge tracing and student performance prediction. arXiv preprint arXiv:2012.12218 (2020)
Mujtaba, D.F., Mahapatra, N.R.: Multi-objective optimization of item selection in computerized adaptive testing. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1018–1026 (2021)
Nakagawa, H., Iwasawa, Y., Matsuo, Y.: Graph-based knowledge tracing: modeling student proficiency using graph neural network. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 156–163 (2019)
Omidvar-Tehrani, B., Amer-Yahia, S., Dutot, P.-F., Trystram, D.: Multi-objective group discovery on the social web. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 296–312. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1_19
Ostrow, K., Donnelly, C., Adjei, S., Heffernan, N.: Improving student modeling through partial credit and problem difficulty. In: Proceedings of the Second 2015 ACM Conference on Learning@ Scale, pp. 11–20 (2015)
Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing. arXiv preprint arXiv:1907.06837 (2019)
Panel, H.E.S.: Final report–improving retention, completion and success in higher education (2017)
Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proceedings 41st Annual Symposium on Foundations of Computer Science, pp. 86–92. IEEE (2000)
Pardos, Z.A., Heffernan, N.T.: KT-IDEM: introducing item difficulty to the knowledge tracing model. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 243–254. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_21
Pavlik, P.I., Jr., Cen, H., Koedinger, K.R.: Performance factors analysis–a new alternative to knowledge tracing. In: AIED 2009 (2009)
Pelánek, R., Řihák, J.: Experimental analysis of mastery learning criteria. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, pp. 156–163 (2017)
Pelánek, R.: Application of time decay functions and Elo system in student modeling. In: Proceedings of the Educational Data Mining, January 2014, pp. 21–27 (2014)
Piech, C., et al.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Rasch, G.: Probabilistic Models for Some Intelligence and Attainment Tests. ERIC (1993)
Reckase, M.D.: Unidimensional item response theory models. In: Multidimensional Item Response Theory. SSBS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-89976-3_2
Rollinson, J., Brunskill, E.: From predictive models to instructional policies. International Educational Data Mining Society (2015)
Rozenblit, L., Keil, F.: The misunderstood limits of folk science: an illusion of explanatory depth. Cogn. Sci. 26(5), 521–562 (2002)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295 (2001)
Su, Y., et al.: Exercise-enhanced sequential modeling for student performance prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press (2018)
bigdata ustc: EduCDM (2021). https://github.com/bigdata-ustc/EduCDM
VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educ. Psychol. 46(4), 197–221 (2011)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Vygotsky, L.: Zone of proximal development. In: Mind in Society: The Development of Higher Psychological Processes, vol. 5291, p. 157 (1987)
Wang, F., et al.: Neural cognitive diagnosis for intelligent education systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6153–6161 (2020)
Wu, A.S., Farrell, R., Singley, M.K.: Scaffolding group learning in a collaborative networked environment (2002)
Xu, Z., Wijekumar, K., Ramirez, G., Hu, X., Irey, R.: The effectiveness of intelligent tutoring systems on K-12 students’ reading comprehension: a meta-analysis. Br. J. Edu. Technol. 50(6), 3119–3137 (2019)
Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for knowledge tracing. In: Proceedings of the 26th International Conference on World Wide Web, pp. 765–774 (2017)
Zhu, H., et al.: A multi-constraint learning path recommendation algorithm based on knowledge map. Knowl. Based Syst. 143, 102–114 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature
About this chapter
Cite this chapter
Bouarour, N., Benouaret, I., Amer-Yahia, S. (2024). Multi-objective Test Recommendation for Adaptive Learning. In: Hameurlain, A., Tjoa, A.M., Akbarinia, R., Bonifati, A. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems LVI. Lecture Notes in Computer Science(), vol 14790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-69603-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-662-69603-3_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-69602-6
Online ISBN: 978-3-662-69603-3
eBook Packages: Computer ScienceComputer Science (R0)