Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sentiment Analysis at Document Level

  • Conference paper
  • First Online:
Smart Trends in Information Technology and Computer Communications (SmartCom 2016)

Abstract

Sentiment analysis becomes a very active research area in the text mining field. It aims to extract people’s opinions, sentiments, and subjectivity from the texts. Sentiment analysis can be performed at three levels: at document level, at sentence level and at aspect level. An important part of research effort focuses on document level sentiment classification, including works on opinion classification of reviews. This survey paper tackles a comprehensive overview of the last update of sentiment analysis at document level. The main target of this survey is to give nearly full image of sentiment analysis techniques at this level. In addition, some future research issues are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Anitha, N., Anitha, B., Pradeepa, S.: Sentiment classification approaches – a review. Int. J. Innovations Eng. Technol. (IJIET) 3(1) (2013)

    Google Scholar 

  2. Baloglu, A., Aktas, M.S.: An automated framework for mining reviews from blogosphere. Int. J. Adv. Internet Technol. 3(3&4), 234–244 (2010)

    Google Scholar 

  3. Bhatia, P., Ji, Y., Eisenstein, J.: Better document-level sentiment analysis from RST Discourse Parsing. In: Empirical Methods in Natural Language Processing, pp. 2212–2218. EMNLP, Lisbon (2015)

    Google Scholar 

  4. Chen, Y.F., Miao, D.Q., Li, W., Zhang, Z.F.: Semantic orientation computing based on concepts. J. CAAI Trans. Intell. Syst. 6(6), 489–494 (2011)

    Google Scholar 

  5. Duwairi, R.M.: Sentiment analysis for dialectical Arabic. In: 6th ICICS International Conference on Information and Communication Systems, pp. 166–170 (2015)

    Google Scholar 

  6. Govindarajan, M.: Sentiment analysis of movie reviews using hybrid method of Naive Bayes and Genetic Algorithm. Int. J. Adv. Comput. Res. 3(4), 139–146 (2013)

    Google Scholar 

  7. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers, New York (2012)

    Book  Google Scholar 

  8. Mishne, G., Multiple Ranking Strategies for Opinion Retrieval in Blogs. In: Online Proceedings of TREC (2006)

    Google Scholar 

  9. Nilesh, M.S., Deshpande, S., Thakre, V.: Survey of techniques for opinion mining. (IJCA) Int. J. Comput. Appl. (0975–8887) 57(13) (2012)

    Google Scholar 

  10. Nguyen, D.Q., Nguyen, D.Q., Vu, T., Pham, S.B.: Sentiment classification on polarity reviews: an empirical study using rating-based features. In: 5th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 128–135, Maryland (2014)

    Google Scholar 

  11. Oard, D.W., Elsayed, T., Wang, J., Wu, Y., Zhang P., Abels, E.G., Lin, J.J., Soergel, D.: TREC 2006 at Maryland: Blog, Enterprise, Legal and QA Tracks. TREC (2006)

    Google Scholar 

  12. Ohana, B., Tierney, B.: Sentiment classification of reviews using SentiWordNet. In: 9th IT&T Conference, pp. 22–23 (2009)

    Google Scholar 

  13. Pak, A., Paroubek, P.: Classification en polarité de sentiments avec une représentation textuelle à base de sous-graphes d’arbres de dépendances. TALN (2011)

    Google Scholar 

  14. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine learning techniques. In: Empirical Methods in Natural Language Processing, pp. 79–86. EMNLP (2002)

    Google Scholar 

  15. Pang, B., Lee, L.: A Sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. In: 42th Annual Meeting of the Associatoin for Computational Linguistics ACL, pp. 271–278 (2004)

    Google Scholar 

  16. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retrieval 2, 1–135 (2008)

    Article  Google Scholar 

  17. Rafrafi, A., Guigue, V., Gallinari, P.: Réseau de neurones profond et SVM pour la classification des sentiments. In: COnférence en Recherche d’Information et Applications CORIA, pp. 121–133 (2011)

    Google Scholar 

  18. Rothfels, J., Tibshirani, J.: Unsupervised sentiment classification of English movie reviews using automatic selection of positive and negative sentiment items. CS224N-Final Project (2010)

    Google Scholar 

  19. Rushdi‐Saleh, M., Martín‐Valdivia, M.T., Ureña‐López, L.A., Perea‐Ortega, J.M.: OCA: opinion corpus for Arabic. J. ASIS&T 62, 2045–2054 (2011)

    Google Scholar 

  20. Sharma, R., Nigam, S., Jain, R.: Opinion mining of movie reviews at document level. IJIT, 3 (2014)

    Google Scholar 

  21. Sindhu, C., ChandraKala, S.: A survey on opinion mining and sentiment polarity classification. IJETAE, 3 (2013)

    Google Scholar 

  22. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.N., Potts, C.: Recursive deep models for semantic compositionality over a sentiment tree bank. In: Empirical Methods for Natural Language Processing. EMNLP (2013)

    Google Scholar 

  23. Tripathi, G., Naganna, S.: Feature selection and classification approach for sentiment analysis. MLAIJ, p. 2201 (2015)

    Google Scholar 

  24. Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: 40th annual meeting of the Association for Computational Linguistics, pp. 417–424. ACL, Philadelphia (2002)

    Google Scholar 

  25. Vinodhini, G., Chandrasekaran, R.M.: Sentiment analysis and opinion mining: a survey. IJARCSSE 2277, 282–292 (2012)

    Google Scholar 

  26. Vinodhini, G., Chandrasekaran, R.M.: Effect of feature reduction in sentiment analysis of online reviews. IJARCET (2013). ISSN 2278–1323

    Google Scholar 

  27. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic classification. In: 50th Annual Meeting of the Association for Computational Linguistics, pp. 90–94. ACL (2012)

    Google Scholar 

  28. Zhang, Q., Wang, B., Wu, L., Huang, X.: FDU at TREC 2007: opinion retrieval of blog track. In: Voorhees, E.M., Buckland, L.P. (eds), TREC 2007, vol. Special Publication, 500–274 (2007)

    Google Scholar 

  29. Zhang, Z., Miao, D., Wei, Z., Wang, L.: Document-level sentiment classification based on behavior-knowledge space method. In: Zhou, S., Zhang, S., Karypis, G. (eds.) ADMA 2012. LNCS (LNAI), vol. 7713, pp. 330–339. Springer, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-35527-1_28

    Chapter  Google Scholar 

  30. Zhang, L., Hua, K., Wang, H., Qian, G., Zhang, L.: Sentiment analysis on reviews of mobile users. In: 11th International Conference on Mobile Systems and Pervasive Computing, Procedia Computer Science, vol. 34, pp. 458–465 (2014)

    Google Scholar 

  31. http://www.cs.cornell.edu/people/pabo/movie-review-data/

  32. https://www.projet-doxa.fr/index.php

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salima Behdenna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Behdenna, S., Barigou, F., Belalem, G. (2016). Sentiment Analysis at Document Level. In: Unal, A., Nayak, M., Mishra, D.K., Singh, D., Joshi, A. (eds) Smart Trends in Information Technology and Computer Communications. SmartCom 2016. Communications in Computer and Information Science, vol 628. Springer, Singapore. https://doi.org/10.1007/978-981-10-3433-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3433-6_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3432-9

  • Online ISBN: 978-981-10-3433-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics