Abstract
Transitions in scan cells bear much impact on the power consumption in scan-based VLSI test systems. X-filling approaches aim to fill don’t care bits of test cube by typically assigning binary values (i.e. either 1s or 0s) in such a way that the mean switching activity gets lessened. We propose here a new X-filling approach named as bit stream connectivity optimization-based X-filling technique, called BSCO—a technique to decrease average shift-in transitions crop up during scan-based testing. In our approach, we have not only considered the shift-in switching activity specific to test vectors but also minimized inter-test cube switching activity by applying BSCO approach. The experimental outcomes attained from the benchmark ISCAS’89 clearly shows that the method is effective for reducing average transitions during scan shift operation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Girard P (2002) Survey of low-power testing of VLSI circuits. In IEEE Des. Test Computing, vol. 19, no. 3, pp. 82–92, doi:10.1109/MDT.2002.1003802
Girard Patrick, Wen Xiaoqing, Touba Nur(2007). Low Power Testing. Morgan Kaufmann. System on-Chip Test Architectures: Nanometer Design for Testability, pp. 207–350, 978-0-12-373973-5
Wang Jing., Walker Duncan. M. H, Majhi A., Kruseman B., Gronthoud G., Villagra L. E., Wiel P. V. D. and Eichenberger S (2006) Power supply noise in delay testing. IEEE Design & Test of Computers. Volume: 24, No. 3, pp 226–234 doi:10.1109/MDT.2007.76
Saxena Jaayasree, Butler Keneth. M., Jayaram Vinay. B. and Kundu S. (2003). A case study of IR-drop in structured at-speed testing, In Proceedings of IEEE International Test Conference (ITC), pp. 1098–1104 doi:10.1109/TEST.2003.1271098
Wu F., Dilillo L., A. Bosio, Girard P., Pravossoudovitch S., Virazel A., J. Ma, W. Zhao, Tehranipoor M. and Wen X (2010) Analysis of Power Consumption and Transition Fault Coverage for LOS and LOC Fault Testing Schemes In Proc. of 13th IEEE Symposium on Design and Diagnostics of Electronic Circuits and Systems, pp. 376–381 doi:10.1109/DDECS.2010.5491748
Butler Keneth M., Saxena Jaayasree., Jain A., Fryars T., Lewis J. and Hetherington G. (2004) Minimizing power consumption in scan testing: Pattern generation and DFT techniques, In proc. IEEE International Test Conference (ITC), pp. 355–364 doi:10.1109/TEST.2004.1386971
Sankaralingam R., Pouya B. and Touba N. A. (2001) Reducing power dissipation during test using scan chain disable, in Proc. IEEE VLSI Test Symposium (VTS), 2001, pp. 319–324 doi:10.1109/VTS.2001.923456
Xu Q., Hu D., and Xiang D (2007) Pattern-directed circuit virtual partitioning for test power reduction, in Proc. IEEE International Test Conference (ITC), pp 1–10 doi:10.1109/TEST.2007.4437633
Lee K. J., Huang T. C. and Chen J. J (2000) Peak-power reduction for multiple-scan circuits during test application, in Proc. IEEE Asian Test Symposium (ATS), pp. 453–458 doi:10.1109/ATS.2000.893666
Rosinger P. M., Al-Hashimi B.M. and Nicolici N (2004) “Scan architecture with mutually exclusive scan segment activation for shift- and capture-power reduction,” IEEE Trans. Computer.-Aided Design Integration, Circuits Systems, vol. 23, no. 7, pp. 1142–1153 doi:10.1109/TCAD.2004.829797
Lee K. J., Hsu S. J., and Ho C. M (2004) Test power reduction with multiple capture orders. In Proceedings of IEEE Asian Test Symposium (ATS), 2004, pp. 26–31 doi:10.1109/ATS.2004.82
Bonhomme Y., Girard P., Landrault C., and Pravossoudovitch S. (2002) Power driven chaining of flip-flops in scan architectures, in Proc. IEEE International Test Conference (ITC), pp. 796–803 doi:10.1109/TEST.2002.1041833
Bonhomme Y., Girard P, Guiller L., Landrault C. and Pravossoudovitch S (2003) “Efficient scan chain design for power minimization during scan testing under routing constraint,” in Proc. IEEE Int. Test Conf. (ITC), Vol 1, pp. 488–493 doi:10.1109/TEST.2003.1270874
Li J., Hu Y. and Li X (2006) A scan chain adjustment technology for test power reduction. In Proc. 15th IEEE Asian Test Symposium (ATS) pp. 11–16 doi:10.1109/ATS.2006.260986
Naeini M. M. and Ooi C. Y. (2015) A Novel Scan Architecture for Low Power Scan-Based Testing, VLSI Design, Vol. 2015, Article ID 264071, doi:10.1155/2015/264071
Sankaralingam R. and Touba N. A. (2002) Inserting test points to control peak power during scan testing. In Proceedings of 17th IEEE International Symposium Defect Fault Tolerance VLSI Systems (DFT), pp. 138–146 doi:10.1109/DFTVS.2002.1173510
Sharifi S., Jaffari J., Hosseinababy M., Afzali-Kusha A. and Navabi Z (2005) Simultaneous reduction of dynamic and static power in scan structures. In Proc. of Design Automation Test Eur. (DATE), pp. 846–851 doi:10.1109/DATE.2005.270
Gerstendorfer S. and Wunderlich H. J. (1999) Minimized power consumption for scan-based BIST. In Proceedings of IEEE International Test Conf. (ITC), pp. 77–84 doi 10.1109/TEST.1999.805616
Girard P., Guiller L., Landrault C. and Pravossoudovitch S (1999) Circuit partitioning for low power BIST design with minimized peak power consumption. In Proc. of IEEE Asian Test Symposium (ATS), pp. 89–94 doi:10.1109/ATS.1999.810734
Basturkmen N. Z., Reddy S. M., and Pomeranz I (2002) A low power pseudo-random BIST technique, in Proc. Int. Conf. Comput. Des. (ICCD), pp. 468–473 doi:10.1109/ICCD.2002.1106815
Bhunia S., Mahmoodi H., Ghosh D., Mukhopadhyay S. and Roy K. (2005) Low-power scan design using first-level supply gating. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 3, pp. 384–395 doi:10.1109/TVLSI.2004.842885
Whetsel L.: Adapting scan architectures for low power operation, in Proc. IEEE International Test Conference (ITC), pp. 863–872 doi:10.1109/TEST.2000.894297
Butler K. M., Saxena J., Fryars T., Hetherington G., Jain A., and Lewis J (2004) Minimizing power consumption in scan testing: Pattern generation and DFT techniques. In Proceedings International Test Conference, pp. 355–364 doi:10.1109/TEST.2004.1386971
Song D., Ahn J., Kim T., and Kang S (2008) MTR-fill: A simulated annealing-based X- filling technique to reduce test power dissipation for scan-based designs, IEICE Transactions on Information and Systems, vol. E91-D, no. 4, pp. 1197–1200 doi:10.1093/ietisy/e91-d.4.1197
Ghosh S., Basu S. and Touba N.A. (2003) Joint minimization of power and area in scan testing by scan cell reordering, In Proceedings. IEEE Computer Society Annual Symposium on VLSI, pp 246–249 doi:10.1109/ISVLSI.2003.1183485
Li J. Xu Q., Hu Y., and Li X (2008) On reducing both shift and capture power for scan-based testing, in Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC pp. 653–658 doi:10.1109/ASPDAC.2008.4484032
Wen X., Yamashita Y., Morishima S., Kajihara S., Wang L., Saluja K. K. and Kinoshita K. (2005) Low-capture-power test generation for scan-based at-speed testing, in Proceedings International Test Conference, pp. 1019–1028. doi:10.1109/TEST.2005.1584068
Sankaralingam R., Oruganti R. R. and Touba N.A (2000) Static compaction techniques to control scan vector power dissipation, in Proc. IEEE VLSI Test Symposium. (VTS), pp. 35–40 doi:10.1109/VTEST.2000.843824
Synopsys Inc.: TetraMAX ATPG user Guide, 2006.
F. Brglez; D. Bryan and K. Kozminski (1989) Combinational profiles of sequential benchmark circuits, In IEEE International Symposium on Circuits and Systems, Vol 3, pp 1929–1934 doi:10.1109/ISCAS.1989.100747
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Mitra, S., Das, D. (2018). An Inter-Test Cube Bit Stream Connectivity-Optimized X-Filling Approach Aiming Shift Power Reduction. In: Dash, S., Das, S., Panigrahi, B. (eds) International Conference on Intelligent Computing and Applications. Advances in Intelligent Systems and Computing, vol 632. Springer, Singapore. https://doi.org/10.1007/978-981-10-5520-1_44
Download citation
DOI: https://doi.org/10.1007/978-981-10-5520-1_44
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-5519-5
Online ISBN: 978-981-10-5520-1
eBook Packages: EngineeringEngineering (R0)