Abstract
The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
P. Abramenko, K.S. Brown, Buildings-Theory and Applications (Springer, New York, 2008)
E. Anshelevich, A. Karagiozova, Terminal backup, 3D matching, and covering cubic graphs. SIAM J. Comput. 40, 678–708 (2011)
M.A. Babenko, A fast algorithm for the path 2-packing problem. Theory Comput. Syst. 46, 59–79 (2010)
M.A. Babenko, A.V. Karzanov, A scaling algorithm for the maximum node-capacitated multiflow problem, in Proceedings of 16th Annual European Symposium on Algorithms (ESA’08). LNCS, vol. 5193 (2008), pp. 124–135
H.-J. Bandelt, M. van de Vel, E. Verheul, Modular interval spaces. Math. Nachr. 163, 177–201 (1993)
A. Bernáth, Y. Kobayashi, T. Matsuoka, The generalized terminal backup problem. SIAM J. Discret. Math. 29, 1764–1782 (2015)
M.R. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature (Springer, Berlin, 1999)
J. Chalopin, V. Chepoi, H. Hirai, D. Osajda, Weakly modular graphs and nonpositive curvature. preprint (2014), arXiv:1409.3892
V. Chepoi, A multifacility location problem on median spaces. Discret. Appl. Math. 64, 1–29 (1996)
P. Favati, F. Tardella, Convexity in nonlinear integer programming. Ric. Oper. 53, 3–44 (1990)
A. Frank, Connections in Combinatorial Optimization (Oxford University Press, Oxford, 2011)
S. Fujishige, Submodular Functions and Optimization, 2nd edn. (Elsevier, Amsterdam, 2005)
S. Fujishige, Bisubmodular polyhedra, simplicial divisions, and discrete convexity. Discret. Optim. 12, 115–120 (2014)
S. Fujishige, S. Iwata, Algorithms for submodular flows. IEICE Trans. Inf. Syst. 83, 322–329 (2000)
S. Fujishige, T. Király, K. Makino, K. Takazawa, S. Tanigawa, Minimizing submodular functions on diamonds via generalized fractional matroid matchings. EGRES Technical Report (TR-2014-14) (2014)
S. Fujishige, K. Murota, Notes on L-/M-convex functions and the separation theorems. Math. Progr. Ser. A 88, 129–146 (2000)
S. Fujishige, X. Zhang, New algorithms for the intersection problem of submodular systems. Japan J. Ind. Appl. Math. 9, 369–382 (1992)
T. Fukunaga, Approximating the generalized terminal backup problem via half-integral multiflow relaxation. SIAM J. Discret. Math. 30, 777–800 (2016)
N. Garg, V.V. Vazirani, M. Yannakakis, Multiway cuts in node weighted graphs. J. Algorithms 50, 49–61 (2004)
A.V. Goldberg, A.V. Karzanov, Scaling methods for finding a maximum free multiflow of minimum cost. Math. Oper. Res. 22, 90–109 (1997)
G. Grätzer, Lattice Theory: Foundation (Birkhäuser, Basel, 2011)
R. Hassin, The minimum cost flow problem: a unifying approach to dual algorithms and a new tree-search algorithm. Math. Progr. 25, 228–239 (1983)
H. Hirai, Folder complexes and multiflow combinatorial dualities. SIAM J. Discret. Math. 25, 1119–1143 (2011)
H. Hirai, Half-integrality of node-capacitated multiflows and tree-shaped facility locations on trees. Math. Progr. Ser. A 137, 503–530 (2013)
H. Hirai, L-extendable functions and a proximity scaling algorithm for minimum cost multiflow problem. Discret. Optim. 18, 1–37 (2015)
H. Hirai, A dual descent algorithm for node-capacitated multiflow problems and its applications. preprint (2015), arXiv:1508.07065
H. Hirai, Discrete convexity and polynomial solvability in minimum 0-extension problems. Math. Progr. Ser. A 155, 1–55 (2016)
H. Hirai, L-convexity on graph structures (2016), arXiv:1610.02469
A. Huber, V. Kolmogorov, Towards minimizing \(k\)-submodular functions. in Proceedings of the 2nd International Symposium on Combinatorial Optimization (ISCO’12). LNCS, vol. 7422 (Springer, Berlin, 2012), pp. 451–462
Y. Iwamasa, On a general framework for network representability in discrete optimization. J. Comb. Optim. (to appear)
Y. Iwata, M. Wahlström, Y. Yoshida, Half-integrality, LP-branching and FPT algorithms. SIAM J. Comput. 45, 1377–1411 (2016)
A.V. Karzanov, A minimum cost maximum multiflow problem, in Combinatorial Methods for Flow Problems, Institute for System Studies (Moscow, 1979), pp. 138–156 (Russian)
A.V. Karzanov, Minimum cost multiflows in undirected networks. Math. Progr. Ser. A 66, 313–324 (1994)
A.V. Karzanov, Minimum \(0\)-extensions of graph metrics. Eur. J. Comb. 19, 71–101 (1998)
A.V. Karzanov, One more well-solved case of the multifacility location problem. Discret. Optim. 1, 51–66 (2004)
J. Kleinberg, É. Tardos, Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields. J. ACM 49, 616–639 (2002)
A.W.J. Kolen, Tree Network and Planar Rectilinear Location Theory, CWI Tract 25 (Center for Mathematics and Computer Science, Amsterdam, 1986)
V. Kolmogorov, Submodularity on a tree: unifying L\(^\natural \)-convex and bisubmodular functions. in Proceedings of the 36th International Symposium on Mathematical Foundations of Computer Science (MFCS’11). LNCS, vol. 6907 (Springer, Berlin, 2011), pp. 400–411
V. Kolmogorov, J. Thapper, S. Živný, The power of linear programming for general-valued CSPs. SIAM J. Comput. 44, 1–36 (2015)
F. Kuivinen, Algorithms and hardness results for some valued CSPs, dissertation No. 1274, Linköping Studies in Science and Technology, Linköping University, Linköping Sweden (2009)
F. Kuivinen, On the complexity of submodular function minimisation on diamonds. Discret. Optim. 8, 459–477 (2011)
L. Lovász, Submodular functions and convexity. in eds. By A. Bachem, M. Grötschel, B. Korte, Mathematical Programming—The State of the Art (Springer, Berlin, 1983), pp. 235–257
K. Murota, Discrete convex analysis. Math. Progr. 83, 313–371 (1998)
K. Murota, Discrete Convex Analysis (SIAM, Philadelphia, 2003)
K. Murota, Recent developments in discrete convex analysis, in eds. By W.J. Cook, L. Lovász, J. Vygen, Research Trends in Combinatorial Optimization (Springer, Berlin, 2009), pp. 219–260
K. Murota, A. Shioura, Exact bounds for steepest descent algorithms of L-convex function minimization. Oper. Res. Lett. 42, 361–366 (2014)
G. Pap, Some new results on node-capacitated packing of A-paths, in Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC’07) (ACM, New York, 2007), pp. 599–604
G. Pap, Strongly polynomial time solvability of integral and half-integral node-capacitate multiflow problems, EGRES Technical Report, TR-2008-12 (2008)
A. Shioura, Algorithms for L-convex function minimization: connection between discrete convex analysis and other research fields. J. Oper. Res. Soc. Japan. (to appear)
B.C. Tansel, R.L. Francis, T.J. Lowe, Location on networks I. II Manag. Sci. 29, 498–511 (1983)
J. Thapper, S. Živný, The complexity of finite-valued CSPs. J. ACM 63(37) (2016)
J. Tits Buildings of Spherical Type and Finite BN-pairs. Lecture Notes in Mathematics, vol. 386 (Springer, New York, 1974)
V.V. Vazirani, Approximation Algorithms (Springer, Berlin, 2001)
S. Živný, The Complexity of Valued Constraint Satisfaction Problems (Springer, Heidelberg, 2012)
Acknowledgements
The author thanks Yuni Iwamasa for careful reading, Satoru Fujishige for remarks, and Kazuo Murota for numerous comments improving presentation. The work was partially supported by JSPS KAKENHI Grant Numbers 25280004, 26330023, 26280004, 17K00029.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Hirai, H. (2017). Discrete Convex Functions on Graphs and Their Algorithmic Applications. In: Fukunaga, T., Kawarabayashi, Ki. (eds) Combinatorial Optimization and Graph Algorithms. Springer, Singapore. https://doi.org/10.1007/978-981-10-6147-9_4
Download citation
DOI: https://doi.org/10.1007/978-981-10-6147-9_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-6146-2
Online ISBN: 978-981-10-6147-9
eBook Packages: Computer ScienceComputer Science (R0)