Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

HKS-Based Feature Extraction for 3D Shape Partial Registration

  • Conference paper
  • First Online:
Advances in Image and Graphics Technologies (IGTA 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 757))

Included in the following conference series:

  • 995 Accesses

Abstract

Heat Kernel Signature (HKS) is an informative and multi-scale descriptor that has been widely used in shape analysis. However, current feature extraction methods based on HKS are highly affected by the time scale, which limits its performance. For the task of 3D shape partial registration, this paper proposes a feature extraction algorithm based on the overlapping diffusion time of the partial shape and the complete shape, which not only eliminates the impact of time scale but also obtains consistent and stable feature points. A registration pipeline is also put forward that guarantees the accuracy. Experiments have been conducted on various partial shapes, and the validity of the algorithm was verified. Compared with other partial registration methods based on HKS, the proposed algorithm achieved more accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Besl, P.J., Mckay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(3), 239–256 (1992)

    Article  Google Scholar 

  2. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  3. Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. ACM Trans. Graph. (TOG) 21(3), 438–446 (2002)

    Article  Google Scholar 

  4. Haehnel, D., Thrun, S., Burgard, W.: An extension of the ICP algorithm for modeling nonrigid objects with mobile robots. In: Proceedings of IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August, pp. 915–920 (2003)

    Google Scholar 

  5. Wand, M., Jenke, P., Huang, Q.: Reconstruction of deforming geometry from time-varying point clouds. In: Proceedings of Eurographics Symposium on Geometry Processing, pp. 49–58 (2007)

    Google Scholar 

  6. Brown, B.J., Rusinkiewicz, S.: Global non-rigid alignment of 3-D scans. ACM Trans. Graph. 26(3), 21 (2007)

    Article  Google Scholar 

  7. Huang, Q.X., Adams, B., Wicke, M.: Non-rigid registration under isometric deformations. Comput. Graph. Forum 27(5), 1449–1457 (2008)

    Article  Google Scholar 

  8. Zhang, K., Yu, W., Manhein, M.: 3D fragment reassembly using integrated template guidance and fracture-region matching. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2138–2146 (2015)

    Google Scholar 

  9. Wei, Yu., Li, M., Li, X.: Fragmented skull modeling using heat kernels. Graph. Models 74(4), 140–151 (2012)

    Article  MathSciNet  Google Scholar 

  10. Zhang, K., Yu, W., Manhein, M.: Reassembling 3D thin shells using integrated template guidance and fracture region matching. In: Proceedings of ACM SIGGRAPH 2015 Posters, p. 88:1 (2015)

    Google Scholar 

  11. Li, X., Yin, Z., Wei, L.: Symmetry and template guided completion of damaged skulls. Comput. Graph. 35(4), 885–893 (2011)

    Article  Google Scholar 

  12. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi scale signature based on heat diffusion. In: Proceedings of Computer Graphics Forum, pp. 1383–1392 (2009)

    Google Scholar 

  13. Aubry, M., Schlickewei, U., Cremers, D.: The wave kernel signature: a quantum mechanical approach to shape analysis. In: Proceedings of IEEE International Conference on Computer Vision Workshops, pp. 1626–1633 (2011)

    Google Scholar 

  14. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  15. Chen, C.S., Hung, Y.P., Cheng, J.B.: A fast automatic method for registration of partially-overlapping range images. In: Proceedings of International Conference on Computer Vision, pp. 242–248 (1998)

    Google Scholar 

  16. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration 27(3), 85 (2008)

    Google Scholar 

  17. Mellado, N., Aiger, D., Mitra, N.J.: Super 4PCS fast global pointcloud registration via smart indexing. Comput. Graph. Forum 33(5), 205–215 (2015)

    Article  Google Scholar 

  18. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  19. Brusco, N., Andreetto, M., Giorgi, A.: 3D registration by textured spin images. In: Proceedings of International Conference on 3-D Digital Imaging and Modeling, pp. 262–269 (2005)

    Google Scholar 

  20. Dinh, H.Q., Kropac, S.: Multi-resolution spin-images. In: 2006 IEEE Computer Society Conference on Proceedings of Computer Vision and Pattern Recognition, pp. 863–870 (2006)

    Google Scholar 

  21. Itskovich, A., Tal, A.: Semantic 3D media and content: surface partial matching and application to archaeology. Comput. Graph. 35(2), 334–341 (2011)

    Article  Google Scholar 

  22. Koenderink, J.J., Van Doorn, A.J.: Surface shape and curvature scales. Image Vision Comput. 10(8), 557–564 (1992)

    Article  Google Scholar 

  23. Dorai, C., Jain, A.K.: COSMOS – a representation scheme for 3D free-form objects. In: Proceedings of International Conference on Computer Vision, Proceedings, pp. 1024– 1029.38 (1997)

    Google Scholar 

  24. Pottmann, H., Wallner, J., Huang, Q.X.: Integral invariants for robust geometry processing. Comput. Aided Geom. Design 26(1), 37–60 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, Q.X., Flory, S., Gelfand, N.: Reassembling fractured objects by geometric matching. In: Proceedings of ACM SIGGRAPH 2006 Papers, pp. 569–578. ACM, New York (2006)

    Google Scholar 

  26. Shapira, L., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. Visual Comput. 24(4), 249–259 (2008)

    Article  Google Scholar 

  27. Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_26

    Chapter  Google Scholar 

  28. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmonic Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grigor’Yan, A.: Escape rate of Brownian motion on Riemanian manifolds. Appl. Anal. 71, 63–89 (1998)

    Article  MATH  Google Scholar 

  30. Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of Eurographics Symposium on Geometry Processing, pp. 225–233 (2007)

    Google Scholar 

  31. GrigorYan, A.: Heat kernels on weighted manifolds and applications. Heat Kernels Weighted Manifolds Appl. Researchgate 398, 93–191 (2005)

    MathSciNet  Google Scholar 

  32. Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Optical Soc. Am. A 4(4), 629–642 (1987)

    Article  Google Scholar 

  33. Cosmo, L., Rodola, E., Bronstein, M.: SHREC 2016: partial matching of deformable shapes. In: Proceedings of Conference: Eurographics Workshop on 3D Object Retrieval (2016)

    Google Scholar 

  34. Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Numerical Geometry of Non-Rigid Shapes. Springer Publishing Company, Incorporated (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingquan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, C., Zhou, M., Du, G., Fan, Y. (2018). HKS-Based Feature Extraction for 3D Shape Partial Registration. In: Wang, Y., et al. Advances in Image and Graphics Technologies. IGTA 2017. Communications in Computer and Information Science, vol 757. Springer, Singapore. https://doi.org/10.1007/978-981-10-7389-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7389-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7388-5

  • Online ISBN: 978-981-10-7389-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics