Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Bacterial Foraging Framework forĀ Agent Based Modeling

  • Conference paper
  • First Online:
Bio-inspired Computing: Theories and Applications (BIC-TA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1159))

  • 1005 Accesses

Abstract

Swarm optimization algorithms and agent based modeling (ABM) are two closely related research areas, parts of the multi agent system field, but they are traditionally not combined. Swarm optimization, in this case the bacterial foraging optimization (BFO), searches for an optimal solution while the ABM searches for a conclusion which resembles the real world, and it can be far from optimal. To bridge the gap, the overall goal this paper is to propose a new paradigm in the form of an architecture and operation procedures, thus creating a BFO-ABM hybrid. The other goal is to create a method which enables 3D visualization of the BFO algorithm. Firstly, an environment is created together with bacteria which physically perform all operators of the BFO. Secondly, a way of seamlessly embedding the bacteria from the BFO into the ABM environment is described. The bacteria are then manipulated and motivated with food and toxicity to act in a certain agent-like way. Simulation results prove that the agents can be effectively used as an ABM tool to present agents of all sizes and behaviors resembling numerous things, from companies, vehicles to people.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942ā€“1948 (1995)

    Google ScholarĀ 

  2. Xiaohui, Y., Niu, B.: Hydrologic Cycle Optimization Part I: Background and Theory, Advances in Swarm Intelligence, pp. 341ā€“349 (2018)

    Google ScholarĀ 

  3. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341ā€“359 (1997)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  4. Eskandar, H., Sadollah, A., Bahreininejad, A., et al.: Water cycle algorithm - a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110ā€“111(10), 151ā€“166 (2012)

    ArticleĀ  Google ScholarĀ 

  5. Dervis, K., Bahriye, A.: A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 214(1), 108ā€“132 (2009)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. Holland, J.: Genetic algorithms. Sci. Am. 267(1), 66ā€“72 (1992)

    ArticleĀ  Google ScholarĀ 

  7. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 1(4), 28ā€“39 (2006)

    ArticleĀ  Google ScholarĀ 

  8. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 22, 52ā€“67 (2002)

    ArticleĀ  Google ScholarĀ 

  9. Niu, B., Fan, Y., Wang, H., Li, L., Wang, X.: Novel bacterial foraging optimization with time-varying chemotaxis step. Int. J. Artif. Intell. 7(11), 257ā€“273 (2011)

    Google ScholarĀ 

  10. Fernandes, C., Ramos, V., Rosa, A.C.: Varying the population size of artificial foraging swarms on time varying landscapes. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 311ā€“316. Springer, Heidelberg (2005). https://doi.org/10.1007/11550822_49

    ChapterĀ  Google ScholarĀ 

  11. Chen, H.N., Zhu, Y.L., Hu, K.Y.: Adaptive bacterial foraging algorithm. Abstract Appl. Anal. 2011 (2011). Article ID 108269

    Google ScholarĀ 

  12. Tang, W.J., Wu, Q.H., Saunders, J.R.: Bacterial foraging algorithm for dynamic environments. In: IEEE Congress on Evolutionary Computation (2006)

    Google ScholarĀ 

  13. Morrison, R.W., De Jong, K.A.: A test problem generator for non - stationary environments. In: Proceedings of the 1999 IEEE Congress on Evolutionary Computation, pp. 2047ā€“2053. IEEE Press (1999)

    Google ScholarĀ 

  14. Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Massachusetts (2002)

    BookĀ  Google ScholarĀ 

  15. Tang, W.J., Wu, Q.H., Saunders, J.R.: A novel model for bacterial foraging in varying environments. In: Gavrilova, M., et al. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 556ā€“565. Springer, Heidelberg (2006). https://doi.org/10.1007/11751540_59

    ChapterĀ  Google ScholarĀ 

  16. Daas, M.S., Batouche, M.: Multi-bacterial foraging optimization for dynamic environments. In: International Conference of Soft Computing and Pattern Recognition (2014)

    Google ScholarĀ 

  17. Conway, J.: The game of life. Sci. Am. 223(4), 4 (1970)

    Google ScholarĀ 

  18. Bruch, E., Atwell, J.: Agent-based models in empirical social research. Sociol. Meth. Res. 44(2), 186ā€“221 (2015)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  19. Tesfatsion, L., Judd, K.L. (eds.): Handbook of Computational Economics: Agent-Based Computational Economics, vol. 2. Elsevier, Amsterdam (2006)

    MATHĀ  Google ScholarĀ 

  20. Cederman, L.E.: Computational models of social forms: advancing generative process theory. Am. J. Sociol. 110(4), 864ā€“893 (2005)

    ArticleĀ  Google ScholarĀ 

  21. Wang, C., Wang, J.: A modified floor field model combined with risk field for pedestrian simulation. Math. Probl. Eng. 1(10) (2016)

    Google ScholarĀ 

  22. Van, L.E., Lijesen, M.: Agents playing Hotellingā€™s game: an agent-based approach to a game theoretic model. Ann. Reg. Sci. 57(2ā€“3), 393ā€“411 (2015)

    Google ScholarĀ 

  23. Tecchia, F., Loscos, C., Conroy-Dalton, R., Chrysanthou, Y.L.: Agent Behavior Simulator (ABS): a platform for urban behavior development. In: First International Game Technology Conference and Idea Expo (GTEC 2001) (2001)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niu Ben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kustudic, M., Ben, N. (2020). A Bacterial Foraging Framework forĀ Agent Based Modeling. In: Pan, L., Liang, J., Qu, B. (eds) Bio-inspired Computing: Theories and Applications. BIC-TA 2019. Communications in Computer and Information Science, vol 1159. Springer, Singapore. https://doi.org/10.1007/978-981-15-3425-6_58

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3425-6_58

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3424-9

  • Online ISBN: 978-981-15-3425-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics