Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Personalized Preservation Mechanism Satisfying Local Differential Privacy in Location-Based Services

  • Conference paper
  • First Online:
Security and Privacy in Digital Economy (SPDE 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1268))

Included in the following conference series:

  • 2017 Accesses

Abstract

With the wide application of location-based services, there is a huge amount of users’ spatial data generated by mobile devices every day. However, the data is left from mobile users and faced with leakage risk from adversaries or untrusted data receivers. Therefore, spatial data should be perturbed to satisfy local differential privacy (LDP), which is a strong privacy metric in the local setting. In this paper, we study the problem of designing a personalized mechanism satisfying LDP for spatial data. We first construct attack and defense for privacy of spatial data and give a novel privacy definition with LDP and users’ personalized requirements. We propose a personalized location privacy preservation mechanism for spatial data satisfying LDP. We demonstrate the optimal utility and privacy guarantee of our mechanism. We analyze the impact of the key parameters on data utility via the experiments over the real dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, R., Li, H., Qin, A.K., Kasiviswanathan, S.P., Jin, H.: Private spatial data aggregation in the local setting. In: Proceedings of 32nd IEEE International Conference on Data Engineering, ICDE, pp. 289–300. IEEE (2016)

    Google Scholar 

  2. Cormode, G., Kulkarni, T., Srivastava, D.: Marginal release under local differential privacy. In: Proceedings of the 2018 International Conference on Management of Data, SIGMOD, pp. 131–146. ACM (2018)

    Google Scholar 

  3. Cui, L., Qu, Y., Nosouhi, M.R., Yu, S., Niu, J., Xie, G.: Improving data utility through game theory in personalized differential privacy. J. Comput. Sci. Technol. 34(2), 272–286 (2019)

    Article  MathSciNet  Google Scholar 

  4. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately. In: Proceedings of Advances in Neural Information Processing Systems, pp. 3571–3580 (2017)

    Google Scholar 

  5. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: Proceedings of 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 429–438. IEEE (2013)

    Google Scholar 

  6. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  7. Freudiger, J., Shokri, R., Hubaux, J.-P.: On the optimal placement of mix zones. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 216–234. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03168-7_13

    Chapter  Google Scholar 

  8. Gedik, B., Liu, L.: Protecting location privacy with personalized k-anonymity: architecture and algorithms. IEEE Trans. Mob. Comput. 7(1), 1–18 (2008)

    Article  Google Scholar 

  9. Gu, B.S., Gao, L., Wang, X., Qu, Y., Jin, J., Yu, S.: Privacy on the edge: customizable privacy-preserving context sharing in hierarchical edge computing. IEEE Trans. Netw. Sci. Eng. (2019, in press). https://doi.org/10.1109/TNSE.2019.2933639

  10. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential privacy. In: Proceedings of Annual Conference on Neural Information Processing Systems, pp. 2879–2887 (2014)

    Google Scholar 

  11. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential privacy. J. Mach. Learn. Res. 17, 17:1–17:51 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Microsoft: GPS trajectory dataset of Geolife project. https://www.microsoft.com/en-us/download/details.aspx?id=52367

  13. Qardaji, W.H., Yang, W., Li, N.: Differentially private grids for geospatial data. In: Proceedings of 29th International Conference on Data Engineering, ICDE, pp. 757–768. IEEE (2013)

    Google Scholar 

  14. Qin, Z., Yang, Y., Yu, T., Khalil, I., Xiao, X., Ren, K.: Heavy hitter estimation over set-valued data with local differential privacy. In: Proceedings of the 2016 SIGSAC Conference on Computer and Communications Security, CCS, pp. 192–203. ACM (2016)

    Google Scholar 

  15. Qin, Z., Yu, T., Yang, Y., Khalil, I., Xiao, X., Ren, K.: Generating synthetic decentralized social graphs with local differential privacy. In: Proceedings of the ACM SIGSAC Conference on Computer and Communications Security, CCS, pp. 425–438. ACM (2017)

    Google Scholar 

  16. Qu, Y., Yu, S., Gao, L., Zhou, W., Peng, S.: A hybrid privacy protection scheme in cyber-physical social networks. IEEE Trans. Comput. Soc. Syst. 5(3), 773–784 (2018)

    Article  Google Scholar 

  17. Qu, Y., Yu, S., Zhou, W., Peng, S., Wang, G., Xiao, K.: Privacy of things: emerging challenges and opportunities in wireless internet of things. IEEE Wirel. Commun. 25(6), 91–97 (2018)

    Article  Google Scholar 

  18. Qu, Y., Yu, S., Zhou, W., Tian, Y.: GAN-driven personalized spatial-temporal private data sharing in cyber-physical social systems. IEEE Trans. Netw. Sci. Eng. (2020, in press). https://doi.org/10.1109/TNSE.2020.3001061

  19. Wang, T., Blocki, J., Li, N., Jha, S.: Locally differentially private protocols for frequency estimation. In: Proceedings of 26th USENIX Security Symposium, pp. 729–745. USENIX (2017)

    Google Scholar 

  20. Warner, S.L.: Randomized response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965)

    Article  Google Scholar 

  21. Wu, X., Li, S., Yang, J., Dou, W.: A cost sharing mechanism for location privacy preservation in big trajectory data. In: Proceedings of International Conference on Communications, ICC, pp. 1–6. IEEE (2017)

    Google Scholar 

  22. Wu, X., Wu, T., Khan, M., Ni, Q., Dou, W.: Game theory based correlated privacy preserving analysis in big data. IEEE Trans. Big Data 1 (2017, in press). https://doi.org/10.1109/TBDATA.2017.2701817

  23. Xiong, X., Liu, S., Li, D., Wang, J., Niu, X.: Locally differentially private continuous location sharing with randomized response. IJDSN 15(8), 1–13 (2019)

    Google Scholar 

  24. Xu, X., He, C., Xu, Z., Qi, L., Wan, S., Bhuiyan, Z.A.: Joint optimization of offloading utility and privacy for edge computing enabled IoT. IEEE Internet Things J. 7(4), 2622–2629 (2019)

    Google Scholar 

  25. Xu, X., Liu, Q., Zhang, X., Zhang, J., Qi, L., Dou, W.: A blockchain-powered crowdsourcing method with privacy preservation in mobile environment. IEEE Trans. Comput. Soc. Syst. 6(6), 1407–1419 (2019)

    Article  Google Scholar 

  26. Xu, X., Liu, X., Xu, Z., Dai, F., Zhang, X., Qi, L.: Trust-oriented IoT service placement for smart cities in edge computing. IEEE Internet Things J. 7(5), 4084–4091 (2019)

    Google Scholar 

  27. Yu, S.: Big privacy: challenges and opportunities of privacy study in the age of big data. IEEE Access 4, 2751–2763 (2016)

    Article  Google Scholar 

  28. Zhao, X., Li, Y., Yuan, Y., Bi, X., Wang, G.: Ldpart: effective location-record data publication via local differential privacy. IEEE Access 7, 31435–31445 (2019)

    Article  Google Scholar 

  29. Zhou, C., Fu, A., Yu, S., Yang, W., Wang, H., Zhang, Y.: Privacy-preserving federated learning in fog computing. IEEE Internet Things J. (2020, in press). https://doi.org/10.1109/JIOT.2020.2987958

Download references

Acknowledgment

This research was partially supported by the National Key Research and Development Program of China (No. 2017YFB1400600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotong Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, D. et al. (2020). A Personalized Preservation Mechanism Satisfying Local Differential Privacy in Location-Based Services. In: Yu, S., Mueller, P., Qian, J. (eds) Security and Privacy in Digital Economy. SPDE 2020. Communications in Computer and Information Science, vol 1268. Springer, Singapore. https://doi.org/10.1007/978-981-15-9129-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9129-7_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9128-0

  • Online ISBN: 978-981-15-9129-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics