Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

This paper deals with the stationary and transient analysis of a single server queueing model subject to differentiated working vacation and customer impatience. Customers are assumed to arrive according to a Poisson process and the service times are assumed to be exponentially distributed. When the system empties, the single server takes a vacation of some random duration (Type I) and upon his return if the system is still empty, he takes another vacation of shorter duration (Type II). Both the vacation duration are assumed to follow exponential distribution. Further, the impatient behaviour of the waiting customer due to slow service during the period of vacation is also considered. Explicit expressions for the time dependent system size probabilities are obtained in terms of confluent hyper geometric series and modified Bessel’s function of first kind using Laplace transform, continued fractions and generating function methodologies. Numerical illustrations are added to depict the effect of variations in different parameter values on the time dependent probabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Gradshteyn, I., Ryzhik, I., Jeffery, A., Zwillinger, D. (eds.): Table of Integrals, Series and Products, 7th edn. Academic Press, Elsevier (2007)

    MATH  Google Scholar 

  • Ibe, O.C., Isijola, O.A.: M/M/1 multiple vacation queueing systems with differentiated vacation. Model. Simul. Eng. 6, 1–6 (2014)

    Google Scholar 

  • Seo, J.-B., Lee, S.-Q., Park, N.-H., Lee, H.-W., Cho, C.-H. (eds.): Performance analysis of sleep mode operation in IEEE 802.16e. In: 38th IEEE Vehicular Technology Conference, vol. 2, pp. 1169–1173 (2004)

    Google Scholar 

  • Lorentzen, L., Waadeland, H.: Continued Fractions with Applications. Studies in Computational Mathematics, vol. 3. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  • Chakrabory, S.: Analyzing peer specific power saving in IEEE 802.11s through queueing petri Nnets: some insights and future research directions. IEEE Trans. Wireless Commun. 15, 3746–3754 (2016)

    Article  Google Scholar 

  • Suranga Sampth, M.I.G., Liu, J.: Impact of customer Impatience on an \( M/M/1 \) queueing system subject to differentiated vacations with a waiting server. Qual. Tech. Quant. Manag. (2018). https://doi.org/10.1080/16843703.2018.1555877

  • Phung-Duc, T.: Single-server systems with power-saving modes. In: Gribaudo, M., Manini, D., Remke, A. (eds.) ASMTA 2015. LNCS, vol. 9081, pp. 158–172. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18579-8_12

    Chapter  Google Scholar 

  • Vijayashree, K.V., Janani, B.: Transient analysis of an M/M/1 queueing system subject to differentiated vacations. Qual. Tech. Quant. Manage. 15, 730–748 (2018)

    Article  Google Scholar 

  • Xiao, Y.: Energy saving mechanism in the IEEE 80216e wireless MAN. IEEE Commun. Lett. 9, 595–597 (2005)

    Article  Google Scholar 

  • Niu, Z., Zhu, Y., Benetis, V.: A phase-type based markov chain model for IEEE 802.16e sleep mode and its performance analysis. In: Proceeding of the 20th International Teletraffic Congress, Canada, pp. 17–21 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Vijayashree .

Editor information

Editors and Affiliations

Appendix: Derivation of \( \phi_{n} \left( t \right) \,{\text{and}} \,\psi_{n} \left( t \right) \)

Appendix: Derivation of \( \phi_{n} \left( t \right) \,{\text{and}} \,\psi_{n} \left( t \right) \)

The confluent hypergeometric function represented by \( {}_{1}{\text{F}}_{1} \left( {{\rm{a}};{\text{c}};{\rm{z}}} \right) \) has a series representation given by

$$ {}_{1}{\text{F}}_{1} \left( {{\rm{a}};{\text{c}};{\rm{z}}} \right) = 1 + \frac{\text{a}}{\rm{c}} \frac{\text{z}}{1!} + \frac{\rm{a}}{\text{c}} \frac{{{\rm{a}}\left( {{\text{a}} + 1} \right)}}{{\left( {{\rm{c}} + 1} \right)}} \frac{{{\text{z}}^{2} }}{2!} + \ldots = 1 + \sum\limits_{k = 1}^{\infty } {\frac{{\mathop \prod \nolimits_{j = 1}^{k - 1} \left( {a + i} \right)}}{{\mathop \prod \nolimits_{i = 0}^{k - 1} \left( {c + i} \right)}} \frac{{z^{k} }}{k!}} $$

Consider the repression for \( \hat{\phi }_{n} \left( s \right) \) obtained as

$$ \hat{\phi }_{n} \left( s \right) = \left( {\frac{\lambda }{\xi }} \right)^{n} \frac{1}{{\mathop \prod \nolimits_{i = 1}^{n} \left( {\frac{{s + \gamma_{1} + \mu_{1} }}{\xi } + i} \right)}}\frac{{{}_{1}{\text{F}}_{1} \left( {\frac{{\mu_{1} }}{\xi } + n + 1 ;\frac{{s + \gamma_{1} + \mu_{1} }}{\xi } + n + 1; - \frac{\lambda }{\xi }} \right)}}{{{}_{1}{\text{F}}_{1} \left( {\frac{{\mu_{1} }}{\xi } + 1 ;\frac{{s + \gamma_{1} + \mu_{1} }}{\xi } + 1; - \frac{\lambda }{\xi }} \right)}} . $$
(A.1)

Using the definition of confluent hypergeometric function, we obtain

$$ {}_{1}{\text{F}}_{1} \left( {\frac{{\mu_{1} }}{\xi } + n + 1 ;\frac{{s + \gamma_{1} + \mu_{1} }}{\xi } + n + 1; - \frac{\lambda }{\xi }} \right) = \sum\limits_{k = 0}^{\infty } {\frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + \left( {n + j} \right)\xi } \right)}}{{\mathop \prod \nolimits_{i = 1}^{n + k} \left( {s + \gamma_{1} + \mu_{1} + i\xi } \right)}} \frac{{\left( { - \lambda } \right)^{k} }}{{\xi^{k - n} k!}}} $$

And hence

$$ \frac{{{}_{1}{\text{F}}_{1} \left( {\frac{{\mu_{1} }}{\xi } + n + 1 ;\frac{{s + \gamma_{1} + \mu_{1} }}{\xi } + n + 1; - \frac{\lambda }{\xi }} \right)}}{{\mathop \prod \nolimits_{i = 1}^{n} \left( {\frac{{s + \gamma_{1} + \mu_{1} }}{\xi } + i} \right)}} = \sum\limits_{k = 0}^{\infty } {\frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + \left( {n + j} \right)\xi } \right)}}{{\mathop \prod \nolimits_{i = 1}^{n + k} \left( {s + \gamma_{1} + \mu_{1} + i\xi } \right)}} \frac{{\left( { - \lambda } \right)^{k} }}{{\xi^{k - n} k!}}} $$

Applying partial fraction in the above equation, we get

$$ \begin{aligned} \frac{{{}_{1}{\text{F}}_{1} \left( {\frac{{\mu_{1} }}{\xi } + n + 1 ;\frac{{s + \gamma_{1} + \mu_{1} }}{\xi } + n + 1; - \frac{\lambda }{\xi }} \right)}}{{\mathop \prod \nolimits_{i = 1}^{n} \left( {\frac{{s + \gamma_{1} + \mu_{1} }}{\xi } + i} \right)}} = \mathop \sum \limits_{k = 0}^{\infty } \frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + \left( {n + j} \right)\xi } \right)}}{k!} \frac{{\left( { - \lambda } \right)^{k} }}{{\xi^{2k - 1} }} \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mathop \sum \limits_{i = 1}^{ n + k} \left( {\frac{{\left( { - 1} \right)^{i - 1} }}{{\left( {i - 1} \right)!\left( {n + k - i} \right)!}}} \right) \left( {\frac{1}{{s + \gamma_{1} + \mu_{1} + i\xi }}} \right) \hfill \\ \end{aligned} $$
(A.2)

Now, consider the term in the denominator of \( \hat{\phi }_{n} \left( s \right) \) as

$$ \begin{aligned} {}_{1}{\text{F}}_{1} \left( {\frac{{\mu_{1} }}{\xi } + 1 ;\frac{{s + \gamma_{1} + \mu_{1} }}{\xi } + 1; - \frac{\lambda }{\xi }} \right) = \mathop \sum \limits_{k = 0}^{\infty } \frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + j\xi } \right)}}{{\mathop \prod \nolimits_{i = 1}^{k} \left( {s + \gamma_{1} + \mu_{1} + i\xi } \right)}} \frac{{\left( { - \lambda } \right)^{k} }}{{\xi^{k} k!}} \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \mathop \sum \limits_{k = 0}^{\infty } \left( { - \lambda } \right)^{k} \hat{a}_{k} \left( s \right) \hfill \\ \end{aligned} $$

Where \( \hat{a}_{k} \left( s \right) = \frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + j\xi } \right)}}{{\mathop \prod \nolimits_{i = 1}^{k} \left( {s + \gamma_{1} + \mu_{1} + i\xi } \right)}}\left( {\frac{1}{{\xi^{k} k!}}} \right)\, {\text{and}} \,\hat{a}_{0} \left( s \right) = 1. \) By resolving into partial fractions, we have

$$ \hat{a}_{k} \left( s \right) = \frac{1}{{\xi^{2k - 1} k!}}\mathop \sum \limits_{r = 1}^{k} \frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + j\xi } \right)\left( { - 1} \right)^{r - 1} }}{{\left( {r - 1} \right)!\left( {k - r} \right)!}}\frac{1}{{s + \gamma_{1} + \mu_{1} + r\xi }} , \,{\text{for}} \, k = 1,2,3 \ldots $$

Using the identity is given by Gradshteyn et al. (2007), it is seen that

$$ \left[ {{}_{1}{\text{F}}_{1} \left( {\frac{{\mu_{1} }}{\xi } + 1 ;\frac{{s + \gamma_{1} + \mu_{1} }}{\xi } + 1; - \frac{\lambda }{\xi }} \right)} \right]^{ - 1} = \left[ {\mathop \sum \limits_{k = 0}^{\infty } \hat{a}_{k} \left( s \right)\left( { - \lambda } \right)^{k} } \right]^{ - 1} = \mathop \sum \limits_{k = 0}^{\infty } \hat{b}_{k} \left( s \right)\lambda^{k} $$
(A.3)

where \( \hat{b}_{0} \left( s \right) = 1 \,{\text{and }}\,{\rm{for}}\, k = 1,2,3 \ldots \)

$$ \begin{aligned} & \hat{b}_{k} \left( s \right) = \left| {\begin{array}{*{20}c} {\hat{a}_{1} \left( s \right)} & 1 & {} & \ldots & {} & {} \\ {\hat{a}_{2} \left( s \right)} & {\hat{a}_{1} \left( s \right)} & 1 & \ldots & {} & {} \\ { \hat{a}_{3} \left( s \right)} & {\hat{a}_{2} \left( s \right)} & { \hat{a}_{2} \left( s \right)} & \ldots & {} & {} \\ {} & \ldots & \ldots & \ldots & \ldots & {} \\ {\hat{a}_{k - 1} \left( s \right)} & { \hat{a}_{k - 2} \left( s \right)} & { \hat{a}_{k - 3} \left( s \right)} & \ldots & {\hat{a}_{1} \left( s \right)} & 1 \\ {\hat{a}_{k} \left( s \right)} & {\hat{a}_{k - 1} \left( s \right)} & {\hat{a}_{k - 2} \left( s \right)} & \ldots & {\hat{a}_{2} \left( s \right)} & {\hat{a}_{1} \left( s \right)} \\ \end{array} } \right| \\ & \quad \quad \quad = \,\mathop \sum \limits_{i = 1}^{k} \left( { - 1} \right)^{i - 1} \hat{a}_{i} \left( s \right)\hat{b}_{k - i} \left( s \right). \\ \end{aligned} $$

Substituting Eq. (A.3) and Eq. (A.2) in Eq. (A.1), we get

$$ \hat{\phi }_{n} \left( s \right) = \lambda^{n} \xi^{n} \mathop \sum \limits_{k = 0}^{\infty } \left( { - \lambda } \right)^{k} \frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + \left( {n + j} \right)\xi } \right)}}{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + j\xi } \right)}}\hat{a}_{n + k} \left( s \right)\mathop \sum \limits_{j = 1}^{\infty } \lambda^{j} \hat{b}_{j} \left( s \right) . $$

Taking inverse Laplace transform of the above equation leads to

$$ \phi_{n} \left( t \right) = \lambda^{n} \xi^{n} \mathop \sum \limits_{k = 0}^{\infty } \left( { - \lambda } \right)^{k} \frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + \left( {n + j} \right)\xi } \right)}}{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + j\xi } \right)}}a_{n + k} \left( t \right)*\mathop \sum \limits_{j = 1}^{\infty } \lambda^{j} b_{j} \left( t \right) , $$

where

$$ a_{k} \left( t \right) = \frac{1}{{\xi^{2k - 1} k!}}\mathop \sum \limits_{r = 1}^{k} \frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{1} + j\xi } \right)\left( { - 1} \right)^{r - 1} }}{{\left( {r - 1} \right)!\left( {k - r} \right)!}}e^{{ - \left( {\gamma_{1} + \mu_{1} + r\xi } \right)t}} , k = 1,2, \ldots $$

and

$$ b_{k} \left( t \right) = \mathop \sum \limits_{i = 1}^{k} \left( { - 1} \right)^{i - 1} a_{i} \left( t \right)*b_{k - i} \left( t \right), k = 2,3, \ldots , b_{1} \left( t \right) = a_{1} \left( t \right) $$

Similarly equation of \( \hat{\psi }_{n} \left( s \right) \) as

$$ \hat{\psi }_{n} \left( s \right) = \lambda^{n} \xi^{n} \mathop \sum \limits_{k = 0}^{\infty } \left( { - \lambda } \right)^{k} \frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{2} + \left( {n + j} \right)\xi } \right)}}{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{2} + j\xi } \right)}}\hat{c}_{n + k} \left( s \right)\mathop \sum \limits_{j = 1}^{\infty } \lambda^{j} \hat{d}_{j} \left( s \right) . $$

Proceeding in the similar manner as that of \( \hat{\phi }_{n} \left( s \right) \), it is seen that the Laplace inverse of \( \hat{\psi }_{n} \left( s \right) \) is

$$ \psi_{n} \left( t \right) = \lambda^{n} \xi^{n} \mathop \sum \limits_{k = 0}^{\infty } \left( { - \lambda } \right)^{k} \frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{2} + \left( {n + j} \right)\xi } \right)}}{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{2} + j\xi } \right)}}c_{n + k} \left( t \right)*\mathop \sum \limits_{j = 1}^{j} \lambda^{j} d_{j} \left( t \right). $$

where

$$ c_{k} \left( t \right) = \frac{1}{{\xi^{2k - 1} k!}}\mathop \sum \limits_{r = 1}^{k} \frac{{\mathop \prod \nolimits_{j = 1}^{k} \left( {\mu_{2} + j\xi } \right)\left( { - 1} \right)^{k} }}{{\left( {r - 1} \right)!\left( {k - r} \right)!}}e^{{ - \left( {\gamma_{2} + \mu_{2} + r\xi } \right)t}} , k = 1,2, \ldots $$

and

$$ d_{k} \left( t \right) = \mathop \sum \limits_{i = 1}^{k} \left( { - 1} \right)^{i - 1} c_{i} \left( t \right)*d_{k - i} \left( t \right), k = 2,3, \ldots $$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vijayashree, K.V., Ambika, K. (2020). An M/M/1 Queueing Model Subject to Differentiated Working Vacation and Customer Impatience. In: Balusamy, S., Dudin, A.N., Graña, M., Mohideen, A.K., Sreelaja, N.K., Malar, B. (eds) Computational Intelligence, Cyber Security and Computational Models. Models and Techniques for Intelligent Systems and Automation. ICC3 2019. Communications in Computer and Information Science, vol 1213. Springer, Singapore. https://doi.org/10.1007/978-981-15-9700-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9700-8_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9699-5

  • Online ISBN: 978-981-15-9700-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics