Abstract
An intelligent autonomous robot is in demand for robotic operations in the fields such as industry, medical, bionics, military. For any machine, designed to follow a precise sequence of instructions, self-positioning, path framing, map architecture, and obstacle prevention are the prerequisites of navigation. This paper presents a survey about the key navigation approaches explored by various authors in the last decade. The survey has a brief insight into the various approaches used for robot navigation concerning to the variable and invariable nature of the vicinity and the obstacle. The comprehensive look-over presented in this paper provides an in-depth analysis and assessment of the discrete classical and heuristic approaches used by the researchers. The research assessment is finally concluded by aggregating the complete knowledge of the various path planning techniques by reviewing the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Truong, X., Ngo, T.D.: Toward socially aware robot navigation in dynamic and crowded environments. IEEE Trans. Autom. Sci. Eng. 14, 18 (2017)
Goyal, J.K.: A new approach of path planning for mobile robots, pp. 863–867 (2014)
Sharma, R., Sharma, A.: A review on interoperability and integration in smart homes. In: Singh, P.K., Sood, S., Kumar, Y., Paprzycki, M., Pljonkin, A., Hong, W.-C. (eds.) FTNCT 2019. CCIS, vol. 1206, pp. 116–128. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-4451-4_11
Thoa, T., Copot, C., Trung, D., De Keyser, R.: Heuristic approaches in robot path planning: a survey. Rob. Auton. Syst. 86, 13–28 (2016)
Kavraki, L.E., LaValle, S.M.: Motion planning. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 109–131. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-30301-5_6
Papachristos, C., et al.: Autonomous exploration and inspection path planning for aerial robots using the robot operating system. In: Koubaa, A. (ed.) Robot Operating System (ROS). SCI, vol. 778, pp. 67–111. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91590-6_3
Zhang, H., Lin, W., Chen, A.: Path planning for the mobile robot: a review. Symmetry (Basel) 10(10), 450 (2018)
Sai, A., Haran, H.: A survey of autonomous mobile robot path planning approaches, pp. 27–29 (2017)
Raja, P.: Optimal path planning of mobile robots: a review. Int. J. Phys. Sci. 7(9), 1314–1320 (2012)
Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Robot. Syst. Theory Appl. 57(1–4), 65–100 (2010)
Wang, L.C., Yong, L.S., Ang, M.H.: Hybrid of global path planning and local navigation implemented on a mobile robot in indoor environment. In: IEEE International Symposium on Intelligent Control - Proceedings, pp. 821–826 (2002)
Atyabi, A., Powers, D.M.W.: Review of classical and heuristic-based navigation and path planning approaches. Int. J. Adv. Comput. Technol. 5, 1 (2013)
Yang, L., Qi, J., Song, D., Xiao, J., Han, J., Xia, Y.: Survey of robot 3D path planning algorithms. J. Control Sci. Eng. (2016). https://www.hindawi.com/journals/jcse/2016/7426913/. Accessed 27 June 2020
Hoy, M., Matveev, A.S., Savkin, A.V.: Algorithms for collision free navigation of mobile robots in complex cluttered environments: a survey. Robotica (2015). https://www.scopus.com/inward/record.uri/. Accessed 27 June 2020
Patle, B.K., Babu L, G., Pandey, A., Parhi, D.R.K., Jagadeesh, A.: A review: on path planning strategies for navigation of mobile robot. Def. Technol. 15(4), 582–606 (2019)
Milos, S.: Roadmap methods vs. cell decomposition in robot motion planning. WSEAS (2007). https://www.semanticscholar.org/paper/Roadmap-methods-vs.-cell-decomposition-in-robot-Seda/. Accessed 27 June 2020
Regli, W.: Robot Lab: robot path planning. Lecture notes of department of computer science. Drexel University. https://www.google.com/search?q=Regli+W.“RobotLabArobotpathplanning/. Accessed 27 June 2020
Schwartz, J.T., Sharir, M.: On the ‘piano movers’ problem I”. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers. Commun. Pure Appl. Math. 36(3), 345–398 (1983)
Ajani, S.N., Amdani, S.Y.: Path planning techniques for navigation of mobile robot: a survey. IOSR J. Eng. 09(5), 77–84 (2019)
Latombe, J.-C.: Roadmap methods. In: Robot Motion Planning, pp. 153–199. Springer, Boston (1991). https://doi.org/10.1007/978-1-4615-4022-9_4
Siméon, T., Laumond, J.-P., Nissoux, C.: Visibility-based probabilistic roadmaps for motion planning. Adv. Robot. 14(6), 477–493 (2000)
Choset, H., et al.: Kavraki Lab | Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Cambridge (2005). https://www.kavrakilab.org/publications/choset-burgard2005principles-of-robot.html. Accessed 06 July 2020
Kim, J.: Workspace exploration and protection with multiple robots assisted by sensor networks. Int. J. Adv. Robot. Syst. 15(4) (2018)
Masehian, E., Amin-Naseri, M.R.: A Voronoi diagram-visibility graph-potencial field compound algorithm for robot path planning. J. Robot. Syst. 21(6), 275–300 (2004)
Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Rob. Res. 5(1), 90–98 (1986). https://doi.org/10.1177/027836498600500106
Hwang, Y.K., Ahuja, N.: A potential field approach to path planning. IEEE Trans. Robot. Autom. 8(1), 23–32 (1992). https://doi.org/10.1109/70.127236
Raja, R., Dutta, A., Venkatesh, K.S.: New potential field method for rough terrain path planning using genetic algorithm for a 6-wheel rover. Rob. Auton. Syst. 72, 295–306 (2015)
Kuo, P.H., Li, T.H.S., Chen, G.Y., Ho, Y.F., Lin, C.J.: Migrant-inspired path planning algorithm for obstacle run using particle swarm optimization, potential field navigation, and fuzzy logic controller. Knowl. Eng. Rev. (2016). https://www.cambridge.org/core/journals/knowledge-engineering-review? Accessed 27 June 2020
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Gul, F., et al.: A comprehensive study for robot navigation techniques. Cogent Eng. 6(1) (2019). Electrical & Electronic Engineering | Review Article
Carelli, R., Freire, E.O.: Corridor navigation and wall-following stable control for sonar-based mobile robots. Rob. Auton. Syst. 45(3–4), 235–247 (2003)
Nazari Maryam Abadi, D., Khooban, M.H.: Design of optimal Mamdani-type fuzzy controller for nonholonomic wheeled mobile robots. J. King Saud Univ. Eng. Sci. 27(1), 92–100 (2015)
Castillo, O., Neyoy, H., Soria, J., García, M., Valdez, F.: Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot. Int. J. Adv. Robot. Syst. 10(1) (2013)
Odry, Á., Fullér, R., Rudas, I.J., Odry, P.: Fuzzy control of self-balancing robots: a control laboratory project. Comput. Appl. Eng. Educ. 28(3), 512–535 (2020). https://doi.org/10.1002/cae.22219
Singh, Y.V., Kumar, B., Chand, S., Sharma, D.: A hybrid approach for requirements prioritization using logarithmic fuzzy trapezoidal approach (LFTA) and artificial neural network (ANN). In: Singh, P.K., Paprzycki, M., Bhargava, B., Chhabra, J.K., Kaushal, N.C., Kumar, Y. (eds.) FTNCT 2018. CCIS, vol. 958, pp. 350–364. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3804-5_26
Chen, J.: Neural Network Definition. Investopedia (2020)
Janglova, D.: Neural Networks in Mobile Robot Motion, December 2004
Pothal, J.K., Parhi, D.R.: Navigation of multiple mobile robots in a highly clutter terrains using adaptive neuro-fuzzy inference system. Rob. Auton. Syst. 72, 48–58 (2015)
Eberhart, R., Kennedy, J.: New optimizer using particle swarm theory. In: Proceedings of the International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)
Tang, Q., Eberhard, P.: Cooperative motion of swarm mobile robots based on particle swarm optimization and multibody system dynamics. Mechanics Based Design of Structures and Machines 39(2), 179–193 (2011)
Chen, Y.L., Cheng, J., Lin, C., Wu, X., Ou, Y., Xu, Y.: Classification-based learning by particle swarm optimization for wall-following robot navigation. Neurocomputing 113, 27–35 (2013)
Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)
Tan, G.Z., He, H., Sloman, A.: Ant colony system algorithm for real-time globally optimal path planning of mobile robots. Zidonghua Xuebao/Acta Autom. Sin. 33(3), 279–285 (2007)
Liu, J., Yang, J., Liu, H., Tian, X., Gao, M.: An improved ant colony algorithm for robot path planning. Soft. Comput. 21(19), 5829–5839 (2016). https://doi.org/10.1007/s00500-016-2161-7
Purian, F.K., Sadeghian, E.: Mobile robots path planning using ant colony optimization and Fuzzy Logic algorithms in unknown dynamic environments. In: CARE 2013 - 2013 IEEE International Conference on Control, Automation, Robotics and Embedded Systems, Proceedings (2013)
Liu, L.Q.: Path planning of underwater vehicle in 3D space based on ant colony algorithm (2008). https://www.researchgate.net/publication/291078044. Accessed 06 July 2020
Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy logic parameter tuning in Ant Colony Optimization and its application in fuzzy control of a mobile robot. Appl. Soft Comput. J. 28, 150–159 (2015)
Bremermann, H.: The evolution of intelligence: the nervous system as a model of its environment. Department of Mathematics, University of Washington, Seattle, Washington (1958)
Holland, J.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT Press, Cambridge (1992). https://ieeexplore.ieee.org/book/6267401. Accessed 06 July 2020
Xiao, J., Michalewicz, Z., Zhang, L., Trojanowski, K.: Adaptive evolutionary planner/navigator for mobile robots. IEEE Trans. Evol. Comput. 1(1), 18–28 (1997)
Kala, R.: Coordination in navigation of multiple mobile robots. Cybern. Syst. 45(1), 1–24 (2014)
Shi, P., Cui, Y.: Dynamic path planning for mobile robot based on genetic algorithm in unknown environment. In: 2010 Chinese Control and Decision Conference, CCDC 2010, pp. 4325–4329 (2010)
Creaser, P.A., Stacey, B.A., White, B.A.: Evolutionary generation of fuzzy guidance laws. In: IEE Conference Publication, no. 455, pp. 883–888, February 1998
Lin, K.P., Hung, K.C.: An efficient fuzzy weighted average algorithm for the military UAV selecting under group decision-making. Knowl. Based Syst. 24(6), 877–889 (2011)
Ni, J., Wang, K., Huang, H., Wu, L., Luo, C.: Robot path planning based on an improved genetic algorithm with variable length chromosome. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pp. 145–149, August 2016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Verma, S., Kumar, N. (2021). Path Planning for Autonomous Robot Navigation: Present Approaches. In: Singh, P.K., Veselov, G., Pljonkin, A., Kumar, Y., Paprzycki, M., Zachinyaev, Y. (eds) Futuristic Trends in Network and Communication Technologies. FTNCT 2020. Communications in Computer and Information Science, vol 1396. Springer, Singapore. https://doi.org/10.1007/978-981-16-1483-5_25
Download citation
DOI: https://doi.org/10.1007/978-981-16-1483-5_25
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-1482-8
Online ISBN: 978-981-16-1483-5
eBook Packages: Computer ScienceComputer Science (R0)