Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Estimating Remaining Useful Life: A Data-Driven Methodology for the White Goods Industry

  • Chapter
  • First Online:
Predictive Maintenance in Smart Factories

Abstract

A Predictive Maintenance  strategy for a complex machine requires a sophisticated and non-trivial analytical stage to provide accurate and trusted predictions. It must be planned and carried out carefully to maximise the information extracted from available data. The SERENA project provided an excellent methodological framework and a solid technical and software foundation to deliver a robust and applicable Predictive Maintenance solution for the White Goods industry. The proposed data-driven methodology was applied on a real use case, that is, estimating the degradation trend of industrial foaming machines and predicting their remaining useful life. The models were built based on historical data and are applied in real-time adjourning their predictions every time new data are collected. The results are promising and highlight how the proposed methodology can be used to achieve a fairly accurate estimate of machinery degradation and plan maintenance interventions accordingly, with significant savings in terms of costs and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Wang, J. Wan, D. Zhang, D. Li, C. Zhang, Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Comput. Netw. 101, 158 (2016)

    Google Scholar 

  2. Y. Chen, F. Zhu, J. Lee, Data quality evaluation and improvement for prognostic modeling using visual assessment based data partitioning method. Computers in Industry 64(3), 214 (2013)

    Article  Google Scholar 

  3. J. Dalzochio, R. Kunst, E. Pignaton de Freitas, A. Binotto, S. Sanyal, J. Favilla, J. Barbosa, Machine learning and reasoning for predictive maintenance in industry 4.0: current status and challenges. Comput. Indus. 123, 103298 (2020). https://doi.org/10.1016/j.compind.2020.103298

  4. M. Motahari-Nezhad, S.M. Jafari, Bearing remaining useful life prediction under starved lubricating condition using time domain acoustic emission signal processing. Exp. Syst. Appl. 168 (2021). http://www.sciencedirect.com/science/article/pii/S0957417420310630

  5. T. Cerquitelli, N. Nikolakis, P. Bethaz, S. Panicucci, F. Ventura, E. Macii, S. Andolina, A. Marguglio, K. Alexopoulos, P. Petrali et al., Enabling predictive analytics for smart manufacturing through an iiot platform. IFAC-PapersOnLine 53(3), 179 (2020)

    Article  Google Scholar 

  6. S. Proto, F. Ventura, D. Apiletti, T. Cerquitelli, E. Baralis, E. Macii, A. Macii, Premises, a scalable data-driven service to predict alarms in slowly-degrading multi-cycle industrial processes, in 2019 IEEE International Congress on Big Data, BigData Congress 2019, Milan, Italy, July 8-13, 2019, ed. by E. Bertino, C.K. Chang, P. Chen, E. Damiani, M. Goul, K. Oyama (IEEE, 2019), pp. 139–143

    Google Scholar 

  7. J. Lee, H.A. Kao, S. Yang, Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP 16, 3 (2014)

    Google Scholar 

  8. D. Apiletti, C. Barberis, T. Cerquitelli, A. Macii, E. Macii, M. Poncino, F. Ventura, istep, an integrated self-tuning engine for predictive maintenance in industry 4.0, in IEEE ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018, Melbourne, Australia, December 11–13, 2018 (2018), pp. 924–931

    Google Scholar 

  9. L. Rüschendorf, The Wasserstein distance and approximation theorems. Prob. Theor. Relat. Fields 70(1), 117 (1985)

    Google Scholar 

  10. W.W.W. Consortium, et al., JSON-LD 1.0: a JSON-based serialization for linked data (2014)

    Google Scholar 

  11. MIMOSA 2020. www.mimosa.org

Download references

Acknowledgements

This research has been partially funded by the European project “SERENA—VerSatilE plug-and-playplatform enabling REmote predictive mainteNAnce” (Grant Agreement: 767561).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Petrali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Petrali, P. et al. (2021). Estimating Remaining Useful Life: A Data-Driven Methodology for the White Goods Industry. In: Cerquitelli, T., Nikolakis, N., O’Mahony, N., Macii, E., Ippolito, M., Makris, S. (eds) Predictive Maintenance in Smart Factories. Information Fusion and Data Science. Springer, Singapore. https://doi.org/10.1007/978-981-16-2940-2_7

Download citation

Publish with us

Policies and ethics