Abstract
As of today, many studies have demonstrated the possibilities that geolocated data from social networks have for the study of urban phenomena. This chapter offers a retrospective and panoramic view of a selection of social networks that have been used to understand a wide range of urban dynamics. Findings from this review and previous experiences evidence that the social networks often selected and used for the purpose of assessing city dynamics share key characteristics such as (i) the locative properties; (ii) the data privacy and availability; (iii) the data potentiality to inform about specific phenomena related to the urban environment; and, (iv) the fact that they are mobile device-based platforms and, thus, users are considered as sensors, and their traces as crowd-sourced sensory information. Five exemplary social networks that meet these four conditions are dealt with in detail (Google Places, Foursquare, Twitter, Instagram and Airbnb), highlighting the opportunities and challenges they portray with respect to data collection and quality for the purpose of urban studies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Miniwatts Marketing Group: World Internet Users Statistics and 2020 World Population Stats. https://www.internetworldstats.com/stats.htm. Accessed 17 Dec 2020
We Are Social: Digital 2020: 3.8 billion people use social media—We Are Social. https://wearesocial.com/blog/2020/01/digital-2020-3-8-billion-people-use-social-media. Accessed 17 Dec 2020
Rubio Gil, Á.: Generación digital: patrones de consumo de Internet, cultura juvenil y cambio social. Rev. Estud. Juv. 88 (2010) (Ejemplar Dedic. a Juv. y Nuevos Medios Comun. págs. 201–221 2010). ISSN-e 0211–4364
Goodchild, M.F.: Citizens as sensors: web 2.0 and the volunteering of geographic information. GeoFocus 7, 8–10 (2007). https://doi.org/10.1007/s10708-008-9190-4
Cheng, Z., Caverlee, J., Lee, K., Sui, D.Z.: Exploring millions of footprints in location sharing services. In: Fifth International AAAI Conference on Weblogs Social Media (2011)
Li, D., Liu, J.: Uncovering the relationship between point-of-interests-related human mobility and socioeconomic status. Telemat. Inform. 39, 49–63 (2019). https://doi.org/10.1016/j.tele.2019.01.001
Longley, P.A., Adnan, M., Lansley, G.: The geotemporal demographics of Twitter usage. Environ. Plan. A. 47, 465–484 (2015). https://doi.org/10.1068/a130122p
Järv, P.: Mining Tourist Behavior from Foursquare Check-ins
Blanford, J.I., Huang, Z., Savelyev, A., MacEachren, A.M.: Geo-located tweets. Enhancing mobility maps and capturing cross-border movement. PLoS One 10 (2015). https://doi.org/10.1371/journal.pone.0129202
Martí, P., Serrano-Estrada, L., Nolasco-Cirugeda, A.: Social media data: challenges, opportunities and limitations in urban studies. Comput. Environ. Urban Syst. 74, 161–174 (2019). https://doi.org/10.1016/j.compenvurbsys.2018.11.001
Yuan, Y., Lu, Y., Chow, T.E., Ye, C., Alyaqout, A., Liu, Y.: The missing parts from social media-enabled smart cities: who, where, when, and what? Ann. Am. Assoc. Geogr. 110, 462–475 (2020). https://doi.org/10.1080/24694452.2019.1631144
Nguyen, T.V.T., Han, H., Sahito, N.: Role of urban public space and the surrounding environment in promoting sustainable development from the lens of social media. Sustainability 11 (2019). https://doi.org/10.3390/su11215967
Chen, M., Arribas-Bel, D., Singleton, A.: Understanding the dynamics of urban areas of interest through volunteered geographic information. J. Geogr. Syst. 21, 89–109 (2019). https://doi.org/10.1007/s10109-018-0284-3
Santos, F.A., Silva, T.H., Loureiro, A.A.F., Villas, L.A.: Automatic extraction of urban outdoor perception from geolocated free texts. Soc. Netw. Anal. Min. 10, 88 (2020). https://doi.org/10.1007/s13278-020-00702-2
Jang, K.M., Kim, Y.: Crowd-sourced cognitive mapping: a new way of displaying people’s cognitive perception of urban space. PLoS One 14 (2019). https://doi.org/10.1371/journal.pone.0218590
Rahmat, H.: Open online platforms and the collaborative production of micro urban spaces: towards an architecture of civic engagement. In: Open Cities|Open Data: Collaborative Cities in the Information Era, pp. 107–128. Palgrave Macmillan (2019). https://doi.org/10.1007/978-981-13-6605-5_5
Alonso-Almeida, M. del M., Borrajo-Millán, F., Yi, L.: Are social media data pushing overtourism? The case of Barcelona and Chinese Tourists. Sustainability 11 (2019). https://doi.org/10.3390/SU11123356
Yang, Y., Heppenstall, A., Turner, A., Comber, A.: Who, where, why and when? using smart card and social media data to understand urban mobility. ISPRS Int. J. Geo-Inf. 8, 271 (2019). https://doi.org/10.3390/ijgi8060271
Lieske, S.N., Leao, S.Z., Conrow, L., Pettit, C.: Assessing geographical representativeness of crowdsourced urban mobility data: an empirical investigation of Australian bicycling. Environ. Plan. B Urban Anal. City Sci. (2019). https://doi.org/10.1177/2399808319894334
Radcliffe-Brown, A.: Structure and Function in Primitive Society. Cohen and West Ltd., London (1952)
Barnes, J.: Class and committees in a Norwegian Islan Parish. Hum. Rel. 7, 39–58 (1954)
Ponce, I.: Monográfico: Redes sociales (2012)
Real Academia Española. https://www.rae.es/. Accessed 17 Dec 2020
IAB Estudio: Estudio Anual Redes Sociales 2020. IAB Spain 71 (2020)
Ebrahimpour, Z., Wan, W., Velázquez García, J.L., Cervantes, O., Hou, L.: Analyzing social-geographic human mobility patterns using large-scale social media data. ISPRS Int. J. Geo-Inf. 9, 125 (2020). https://doi.org/10.3390/ijgi9020125
Khan, N.U., Wan, W., Yu, S.: Location-based social network’s data analysis and spatio-temporal modeling for the mega city of Shanghai. China. ISPRS Int. J. Geo-Inf. 9, 76 (2020). https://doi.org/10.3390/ijgi9020076
Beltrán López, G.: Geolocalización y redes sociales. Un mundo social, local y móvil. Bubok, España (2012)
Vanhoof, M., Godoy-lorite, A., Murcio, R., Iacopini, I., Zdanowska, N., Raimbault, J., Milton, R., Arcaute, E., Vanhoof, M., Godoy-lorite, A., Murcio, R., Iacopini, I., Zdanowska, N., Vanhoof, M., Godoy-lorite, A., Murcio, R., Iacopini, I.: Using Foursquare data to reveal spatial and temporal patterns in London. NetMob. 6 (2019)
Novović, O., Grujić, N., Brdar, S., Govedarica, M., Crnojević, V.: Clustering foursquare mobility networks to explore urban spaces. In: Advances in Intelligent Systems and Computing, pp. 544–553. Springer (2020). https://doi.org/10.1007/978-3-030-45697-9_53
Yang, L., Marmolejo Duarte, C.: Identifying tourist-functional relations of urban places through Foursquare from Barcelona. GeoJournal 9 (2019). https://doi.org/10.1007/s10708-019-10055-9
Jae-Hee, C., Il-Jung, S.: Clustering foursquare users’ collective activities: a case of Seoul. J. Bigdata 5, 55–63 (2020). https://doi.org/10.36498/kbigdt.2020.5.1.55
Cerrone, D., Baeza, J.L., Lehtovuori, P.: Optional and necessary activities: operationalising Jan Gehl’s analysis of urban space with Foursquare data. Int. J. Knowl. Based Dev. 68–79 (2020). Inderscience Publishers. https://doi.org/10.1504/IJKBD.2020.106836
Üsküplü, T., Terzi, F., Kartal, H.: Discovering activity patterns in the city by social media network data: a case study of Istanbul. Appl. Spat. Anal. Pol. 13, 945–958 (2020). https://doi.org/10.1007/s12061-020-09336-5
Martí, P., García-Mayor, C., Nolasco-Cirugeda, A., Serrano-Estrada, L.: Green infrastructure planning: unveiling meaningful spaces through Foursquare users’ preferences. Land Use Pol. 97, 104641 (2020). https://doi.org/10.1016/j.landusepol.2020.104641
Barreneche, C.: Una página Web para cada lugar en el mundo: Google ,codificación y comodificación del espacio. Actas del II Congr. Int. sobre Imagen, Cult. y Tecnol. 231–241 (2012)
Copparoni, M.: Google Maps, cada vez más utilizado para decidir una compra. https://www.lavoz.com.ar/negocios/google-maps-cada-vez-mas-utilizado-para-decidir-una-compra. Accessed 17 Dec 2020
Serrano Estrada, L., Bernabeu Bautista, Á., Ciriquián, P.M.: Actividades económicas y urbanas en ejes estructurantes metropolitanos. La aportación de los datos geolocalizados de Google Places. Urbano 23, 80–97 (2020). https://doi.org/10.22320/07183607.2020.23.42.07
Hidalgo, C.A., Castañer, E., Sevtsuk, A.: The amenity mix of urban neighborhoods. Habitat Int. 106, 102205 (2020). https://doi.org/10.1016/j.habitatint.2020.102205
Wilson, L., Danforth, J., Harvey, D., Licalzi, N.: Quantifying the urban experience: establishing criteria for performance based zoning. Simul. Ser. 237–244 (2018). https://doi.org/10.22360/simaud.2018.simaud.031
Landsman, D., Kats, P., Nenko, A., Sobolevsky, S.: Zoning of St. Petersburg through the prism of social activity networks. Proc. Comput. Sci. 178, 125–133 (2020). https://doi.org/10.1016/j.procs.2020.11.014
van Weerdenburg, D., Scheider, S., Adams, B., Spierings, B., van der Zee, E.: Where to go and what to do: extracting leisure activity potentials from Web data on urban space. Comput. Environ. Urban Syst. 73, 143–156 (2019). https://doi.org/10.1016/j.compenvurbsys.2018.09.005
Caldevilla Domínguez, D.: Las Redes Sociales. Tipología, uso y consumo de las redes 2.0 en la sociedad digital actual 33, 45–68 (2010)
Kovács-Győri, A., Ristea, A., Havas, C., Resch, B., Cabrera-Barona, P.: #London2012: towards citizen-contributed urban planning through sentiment analysis of twitter data. Urban Plan. 3, 75–99 (2018). https://doi.org/10.17645/up.v3i1.1287
Plunz, R.A., Zhou, Y., Carrasco Vintimilla, M.I., Mckeown, K., Yu, T., Uguccioni, L., Sutto, M.P.: Twitter sentiment in New York City parks as measure of well-being. Landsc. Urban Plan. 189, 235–246 (2019). https://doi.org/10.1016/j.landurbplan.2019.04.024
Zivanovic, S., Martinez, J., Verplanke, J.: Capturing and mapping quality of life using Twitter data. GeoJournal 85, 237–255 (2020). https://doi.org/10.1007/s10708-018-9960-6
Osorio-Arjona, J., García-Palomares, J.C.: Social media and urban mobility: using twitter to calculate home-work travel matrices. Cities 89, 268–280 (2019). https://doi.org/10.1016/j.cities.2019.03.006
Wang, Q., Phillips, N.E., Small, M.L., Sampson, R.J.: Urban mobility and neighborhood isolation in America’s 50 largest cities. Proc. Natl. Acad. Sci. USA 115, 7735–7740 (2018). https://doi.org/10.1073/pnas.1802537115
Goh, G., Koh, J.Y., Zhang, Y.: Twitter-informed crowd flow prediction. In: IEEE International Conference on Data Mining Workshops, ICDMW, pp. 624–631. IEEE Computer Society (2019). https://doi.org/10.1109/ICDMW.2018.00097
Martín, A., Julián, A.B.A., Cos-Gayón, F.: Analysis of Twitter messages using big data tools to evaluate and locate the activity in the city of Valencia (Spain). Cities 86, 37–50 (2019). https://doi.org/10.1016/j.cities.2018.12.014
Bhowmick, D., Winter, S., Stevenson, M.: Using georeferenced twitter data to estimate pedestrian traffic in an urban road network. In: Leibniz International Proceedings in Informatics, LIPIcs. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing (2020). https://doi.org/10.4230/LIPIcs.GIScience.2021.I.1
Airbnb Inc.: Get to know Airbnb. https://www.airbnb.com/d/howairbnbworks. Accessed 03 July 2020
Wortham, J.: Matching Travelers With Rooms, via the Web—The New York Times. https://www.nytimes.com/2011/07/25/technology/matching-travelers-with-rooms-via-the-web.html. Accessed 17 Dec 2020
Airbnb Inc.: What do the different home types mean? https://www.airbnb.co.uk/help/article/317/what-do-the-different-home-types-mean?ibbe=1&topic=199. Accessed 01 June 2020
Quattrone, G., Greatorex, A., Quercia, D., Capra, L., Musolesi, M.: Analyzing and predicting the spatial penetration of Airbnb in U.S. cities. EPJ Data Sci. 7, 31 (2018). https://doi.org/10.1140/epjds/s13688-018-0156-6
Gyódi, K.: Airbnb in European cities: business as usual or true sharing economy? J. Clean. Prod. 221, 536–551 (2019). https://doi.org/10.1016/j.jclepro.2019.02.221
Li, H., Srinivasan, K.: Competitive dynamics in the sharing economy: an analysis in the context of airbnb and hotels. Mark. Sci. 38, 365–391 (2019). https://doi.org/10.1287/mksc.2018.1143
Dudás, G., Vida, G., Kovalcsik, T., Boros, L.: A socio-economic analysis of Airbnb in New York City. Reg. Stat. 7, 135–151 (2017). https://doi.org/10.15196/RS07108
Perez-Sanchez, V., Serrano-Estrada, L., Marti, P., Mora-Garcia, R.-T.: The what, where, and why of Airbnb price determinants. Sustainability 10, 4596 (2018). https://doi.org/10.3390/su10124596
Cai, Y., Zhou, Y., Ma, J., Scott, N.: Price determinants of Airbnb listings: evidence from Hong Kong. Tour. Anal. 24, 227–242 (2019). https://doi.org/10.3727/108354219X15525055915554
Instagram Inc.: ¿Qué es Instagram?|Ayuda de Instagram. https://www.facebook.com/help/instagram/424737657584573. Accessed 18 Dec 2020
Cantón-Correa, F.-J., Alberich-Pascual, J.: Construcción social de la imagen de una ciudad a través de Instagram: el caso de Granada The social construction of the image of a city through Instagram: The case of Granada 1699–2407 (2019). https://doi.org/10.3145/epi.2019.ene.08
Iglesias-Sánchez, P.P., Correia, M.B., Jambrino-Maldonado, C., de las Heras-Pedrosa, C.: Instagram as a co-creation space for tourist destination image-building: Algarve and costa del sol case studies. Sustainability 12, 1–26 (2020). https://doi.org/10.3390/su12072793
Zasina, J.: The Instagram image of the city. Insights from Lodz, Pol. Bull. Geogr. 42, 213–225 (2018). https://doi.org/10.2478/bog-2018-0040
Honig, C.D.F., MacDowall, L.: Spatio-temporal mapping of street art using Instagram. First Mon. 22, (2017). https://doi.org/10.5210/fm.v22i3.7072
Martí Ciriquián, P., Nolasco-Cirugeda, A., Serrano-Estrada, L.: Los datos geolocalizados de las redes sociales en el estudio de cuestiones urbanas complejas: cinco temas, cinco redes. ACE- Archit. Ciudad y Entorno. 14, 35–60 (2019). http://doi.org/10.5821/ace.14.41.8217
Martí, P., García-Mayor, C., Serrano-Estrada, L.: Taking the urban tourist activity pulse through digital footprints. Curr. Issues Tour. (2020). https://doi.org/10.1080/13683500.2019.1706458
Martí, P., García-Mayor, C., Serrano-Estrada, L.: Identifying opportunity places for urban regeneration through LBSNs. Cities 90, 191–206 (2019). https://doi.org/10.1016/j.cities.2019.02.001
Owuor, I., Hochmair, H.H.: An overview of social media apps and their potential role in geospatial research (2020). https://doi.org/10.3390/ijgi9090526
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Bernabeu-Bautista, Á., Serrano-Estrada, L., Martí, P. (2022). Social Media Data Collection and Quality for Urban Studies. In: Biswas, A., Patgiri, R., Biswas, B. (eds) Principles of Social Networking. Smart Innovation, Systems and Technologies, vol 246. Springer, Singapore. https://doi.org/10.1007/978-981-16-3398-0_11
Download citation
DOI: https://doi.org/10.1007/978-981-16-3398-0_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-16-3397-3
Online ISBN: 978-981-16-3398-0
eBook Packages: EngineeringEngineering (R0)