Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Vision-Based Real-Time Driver Identity Recognition and Attention Monitoring System

  • Conference paper
  • First Online:
Ubiquitous Intelligent Systems

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 243))

  • 723 Accesses

Abstract

In the current decade, many automobile crashes are occurred due to the non-professional drivers and the negligence of legal drivers during driving. To reduce the automobile crashes, illegal driver recognition and legal driver’s attention estimation requires significant research attention in the field of computer vision. In this paper, a driver recognition and assistance system is proposed to monitor the driver’s attention and drowsiness based on face and eyes tracking. For that, initially, the driver is recognized before starting the automobile through SVM, where features are extracted by using uniform LBP and Gabor filters. After recognize the driver, the driver is allowed to drive. Furthermore, from the recognized face, the eye’s pupils are detected and tracked to estimate the attention of the driver. Here, color feature is utilized to track the face and eyes through the mean shift algorithm. The system generates the alarm for the illegal driver and awareness alarm of the driver in the case of driver face angle and eye’s fatigue. The effectiveness of the proposed system is demonstrated through the real-time experiment. The proposed system is evaluated in the different lighting conditions and presented outcomes demonstrate the adequacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Chai, Z. Sun, H. Mendez-Vazquez, R. He, T. Tan, Gabor ordinal measures for face recognition. IEEE Trans. Inf. Forensics Secur. 9(1), 14–26 (2014)

    Article  Google Scholar 

  2. M. Yang, L. Zhang, Gabor feature based sparse representation for face recognition with Gabor occlusion dictionary, in European Conference on Computer Vision (Springer, Berlin, Heidelberg, 2010), pp. 448–461

    Google Scholar 

  3. T. D’Orazio, M. Leo, C. Guaragnella, A. Distante, A visual approach for driver inattention detection. Pattern Recogn. 40(8), 2341–2355 (2007)

    Google Scholar 

  4. T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Machine Intell. 28(12), 2037–2041 (2006)

    Google Scholar 

  5. X. Tan, B. Triggs, Fusing Gabor and LBP feature sets for kernel-based face recognition, in International Workshop on Analysis and Modeling of Faces and Gestures (Springer, Berlin, Heidelberg, 2007), pp. 235–249

    Google Scholar 

  6. P.J. Phillips, Support vector machines applied to face recognition, in Advances in Neural Information Processing Systems, pp. 803–809 (1999)

    Google Scholar 

  7. K. Kumar, Artificial neural network based face detection using gabor feature extraction. Int. J. Adv. Technol. Eng. Res. (IJATER) 2, 220–225 (2012)

    Google Scholar 

  8. Y. Zhang, S. Li, Gabor-LBP based region covariance descriptor for person re-identification, in 2011 Sixth International Conference on Image and Graphics (ICIG)(IEEE, 2011), pp. 368–371

    Google Scholar 

  9. L. Alam, M.M. Hoque, Vision-based driver’s attention monitoring system for smart vehicles, in Advances in Intelligent Systems and Computing, vol. 86 (Springer, 2019), pp. 196–209

    Google Scholar 

  10. E. Murphy-Chutorian, M.M. Trivedi, Head pose estimation and augmented reality tracking: an integrated system and evaluation for monitoring driver awareness. IEEE Trans. Intell. Transp. Syst. 11(2), 300–311 (2010)

    Google Scholar 

  11. P. Chowdhury, L. Alam, M.M. Hoque, Designing an empirical framework to estimate the driver's attention, in 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV) (IEEE, 2016), pp. 513–518

    Google Scholar 

  12. C.H. Morimoto, D. Koons, A. Amir, M. Flickner, Pupil detection and tracking using multiple light sources. Image Vis. Comput. 18(4), 331–335 (2000)

    Google Scholar 

  13. S. Ghosh, T. Nandy,  N. Manna, Real time eye detection and tracking method for driver assistance system, in Advancements of Medical Electronics (Springer, 2015), pp. 13–25

    Google Scholar 

  14. A. Rahman, M. Sirshar, A. Khan, Real time drowsiness detection using eye blink monitoring, in 2015 National Software Engineering Conference (NSEC) (IEEE, 2015), pp. 1–7

    Google Scholar 

  15. J. Liu, X. Zhong, An object tracking method based on Mean Shift algorithm with HSV color space and texture features. Cluster Comput., 1–12 ( 2018)

    Google Scholar 

  16. B. Wang, B. Fan, Adoptive mean shift tracking algorithm based on the feature histogram of color and texture. J. Nanjing Univ. Posts Telecommunication. 33(03), 18–25 (2013)

    Google Scholar 

  17. P. Viola, M.J. Jones, Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khaliluzzaman, M., Ahmed, S., Jashim Uddin, M. (2022). A Vision-Based Real-Time Driver Identity Recognition and Attention Monitoring System. In: Karuppusamy, P., Perikos, I., García Márquez, F.P. (eds) Ubiquitous Intelligent Systems. Smart Innovation, Systems and Technologies, vol 243. Springer, Singapore. https://doi.org/10.1007/978-981-16-3675-2_55

Download citation

Publish with us

Policies and ethics