Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sleeping Node Scheduling Method Based Redundant Node Energy Reduction in Wireless Sensor Networks

  • Conference paper
  • First Online:
Applied Computational Technologies (ICCET 2022)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 303))

Included in the following conference series:

  • 666 Accesses

Abstract

In WSNs, the accuracy and the reduction of the energy taken by the redundant data are the more challenging parameter. To resolve the above problem, sleeping node scheduling methodology (SNSM) with some of the same measures are proposed, it reduces the energy consumption, sensors are scheduled into the active mode or sleep mode, Clustering formation is used to balance the load for energy consumption, using fuzzy similarity theory sensor nodes divide into categories, based on data integrity and a redundant node will go to a sleep state in the next round. The simulation results confirm the improvements in accuracy performance and energy consumption of the networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38, 393–422 (2002)

    Article  Google Scholar 

  2. Younis, O., Krunz, M., Ramasubramanian, S.: Node clustering in wireless sensor networks: recent developments and deployment challenges. IEEE Netw. 20, 20–25 (2006)

    Article  Google Scholar 

  3. Dhasian, H.R., Balasubramanian, P.: Survey of data aggregation techniques using soft computing in wireless sensor networks. IET Inf. Secur. 7, 336–342 (2013)

    Article  Google Scholar 

  4. Bagci, H., Yazici, A.: An energy-aware fuzzy approach to unequal clustering in wireless sensor networks. Appl. Soft Comput. 13, 1741–1749 (2013)

    Article  Google Scholar 

  5. Taheri, H., Neamatollahi, P., Younis, O.M., Naghibzadeh, S., Yaghmaee, M.H.: An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic. Ad Hoc Netw. 10, 1469–1481 (2012)

    Article  Google Scholar 

  6. Zheng, H., Guo, W., Xiong, N.: A kernel-based compressive sensing approach for mobile data gathering in wireless sensor network systems. IEEE Trans. Syst. Man Cybern. Syst. 99, 1–13 (2017)

    Google Scholar 

  7. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: an application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1(4), 660–670 (2002)

    Article  Google Scholar 

  8. Kumar, D., Aseri, T.C., Patel, R.B.: EEHC: energy-efficient heterogeneous clustered scheme for wireless sensor networks. Comput. Commun. 32(4), 662–667 (2009)

    Article  Google Scholar 

  9. Karaca, O., Sokullu, R., Prasad, N.R., Prasad, R.: Application-oriented multi-criteria optimization in WSNs using on AHP. Wirel. Pers. Commun. 65(3), 689–712 (2012)

    Article  Google Scholar 

  10. Hou, R., Ren, W., Zhang, Y.: A wireless sensor network clustering algorithm based on energy and distance. In: Second International Workshop on Computer Science and Engineering (IWCSE), pp. 439–442 (2009)

    Google Scholar 

  11. Wu, Y., Fahmy, S.: Optimal sleep/wake scheduling for time-synchronized sensor networks with QoS guarantees. IEEE/ACM Trans. Netw. 17(5), 1508–1521 (2009)

    Article  Google Scholar 

  12. Lee, D., Yoon, K.: An efficient spatio-temporal index for Spatio-temporal query in wireless sensor networks. KSII Trans. Internet Inf. Syst. 11(10), 4908–4928 (2017)

    Google Scholar 

  13. Paul, S., Sao, N.K.: An energy-efficient hybrid node scheduling scheme in cluster-based wireless sensor networks. In: World Congress on Engineering (WCE 2011), vol. 2, pp. 1775–1779 (2011)

    Google Scholar 

  14. Tan, N.D., Viet, N.D.: SSTBC: sleep scheduled and tree-based clustering routing protocol for energy-efficient in wireless sensor networks. In: IEEE International Conference on Computing & Communication Technologies—Research, Innovation, and Vision for the Future (RIVF), pp. 180–185 (2015)

    Google Scholar 

  15. Wu, X., Cho, J., d’Auriol, B.J., Lee, S.: Sleep nodes scheduling in cluster-based heterogeneous sensor networks using AHP. In: Lee, Y.-H., Kim, H.-N., Kim, J., Park, Y., Yang, L.T., Kim, S.W. (eds.) ICESS 2007. LNCS, vol. 4523, pp. 437–444. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72685-2_41

    Chapter  Google Scholar 

  16. Wu, M., Tan, L., Xiong, N.: Data prediction, compression, and recovery in clustered wireless sensor networks for environmental monitoring applications. Inf. Sci. 329, 800–818 (2016)

    Article  Google Scholar 

  17. Khalil, E.A., Ozdemir, S.: Energy-aware evolutionary routing protocol with probabilistic sensing model and wakeup schedule. In: IEEE Globe-com Workshops (GCWkshps), pp. 873–878 (2013)

    Google Scholar 

  18. More, A., Raising Hani, V.: A node failure and battery-aware coverage protocol for wireless sensor networks. Comput. Electr. Eng. 64, 200–219 (2017)

    Article  Google Scholar 

  19. More, A., Raising Hani, V.: Random backoff sleep protocol for energy-efficient coverage in wireless sensor networks advanced computing. Netw. Inf. 2, 123–131 (2014)

    Google Scholar 

  20. Simenthy, J.R., Vijayan, K.: Advanced intrusion detection system for wireless sensor networks. IJAREEIE 3 (2014)

    Google Scholar 

  21. Praveenkumar, S., Jaya, T., Vijayan, K., Yuvaraj, S.: Simulation of quantum key distribution in a secure star topology optimization in quantum channel. Microprocess. Microsyst. 82, 103820 (2021)

    Article  Google Scholar 

  22. Vijayan, K., Raaza, A.: A novel cluster arrangement energy efficient routing protocol for wireless sensor networks. Indian J. Sci. Technol. 9(2), 1–9 (2016). https://doi.org/10.17485/ijst/2016/v9i2/79073

    Article  Google Scholar 

  23. Vijayan, K., Ramprabu, G., Selvakumara Samy, S., Rajeswari, M.: Cascading model in underwater wireless sensors using routing policy for state transitions. Microprocess. Microsyst. 79, 103298 (2020). https://doi.org/10.1016/j.micpro.2020.103298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vijayan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sakthi Shunmuga Sundaram, P., Vijayan, K. (2022). Sleeping Node Scheduling Method Based Redundant Node Energy Reduction in Wireless Sensor Networks. In: Iyer, B., Crick, T., Peng, SL. (eds) Applied Computational Technologies. ICCET 2022. Smart Innovation, Systems and Technologies, vol 303. Springer, Singapore. https://doi.org/10.1007/978-981-19-2719-5_57

Download citation

Publish with us

Policies and ethics