Abstract
Featuring the recent rise of mobile technology, new devices with a variety of connection ports have become more popular. Multiple communication interfaces may now be usable over a single TCP connection thanks to the multi-path transmission control protocol (MPTCP), which was developed to speed up Internet use. There are three main design aims for the MPTCP congestion management algorithms: better performance, more fairness, and congestion balancing. MPTCP congestion control algorithms now in use cannot achieve these design goals. Due to its inability to leverage the network, an MPTCP congestion-control algorithm, such as OLIA, often results in poor performance. With the current Internet’s enormous volume of transient traffic, it is difficult to keep track of MPTCP congestion management techniques. MPTCP congestion control methods may benefit from being aware of current network delay conditions. There are various sub flows in an MPTCP connection, and the schedulers are employed to deal with this heterogeneity. MPTCP’s scheduler is an important part of the software. In this study, MPTCP congestion management and MPTCP schedulers are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981). https://doi.org/10.1016/0022-2836(81)90087-5
Ford, A., Raiciu, C., Handley, M., Bonaventure, O., Paasch, C.: [Online] (2013). Available: https://tools.ietf.org/html/rfc6824
Wu, J., Yuen, C., Cheng, B., Wang, M., Chen, J.: Streaming high-quality mobile video with multipath TCP in heterogeneous wireless networks. IEEE Trans. Mob. Comput. 15, 2345–2361 (2015)
Wischik, D., Raiciu, C., Greenhalgh, A., Handley, M.: Design
Staff, A.: [Online], (2019). Available: http://appleinsider.com/articles/13/09/20/apple-found-to-be-using-advanced-multipath-tcp-networking-in-ios-7
[Online] (2019). Available: https://multipathtcp.org/pmwiki.php/Users/Android
Ford, A., Raiciu, C., Handley, M., Barre, S., Iyengar, J.: Architectural guidelines for multipath TCP development. IETF RFC 6182–6182 (2011)
Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP extensions for multipath operation with multiple addresses. IETF RFC 6824 (2013)
Raiciu, C., Handley, M., Wischik, D.: Coupled congestion control for multipath transport protocols. IETF RFC 6356 (2011)
Khalili, R., Gast, N., Popovic, M., Boudec, J.: MPTCP is not pareto-optimal: performance issues and a possible solution. IEEE/ACM Trans. Networking 21(5), 1651–1665 (2013)
Peng, Q., Valid, A., Hwang, J., Low, S.: Multipath TCP: analysis, design and implementation. IEEE/ACM Trans. Networking 24(1), 596–609 (2016)
Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Syst. Rev. 42(5), 64–74 (2008)
Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. IEEE INFOCOM 1–12 (2006)
Kato, T., Diwakar, A., Yamamoto, R., Ohzahata, S., Suzuki, N.: Performance evaluation of maltipath TCP congestion control. ICN 2019: 18th International Conference on Networks, pp. 19–24 (2019)
Ford, A., Raiciu, C., Handley, M., Bonaventure, O., Paasch, C.: Rfc 6824: TCP extensions for multipath operation with multiple addresses. Internet Eng. Task Force (2013)
Pokhrel, S.R., Ding, J., Park, J., Park, O.S., Choi, J.: Towards enabling critical mmtc: a review of urllc within mmtc. IEEE Access, vol. 8, pp. 131796–131813 (2020)
Paasch, C., Ferlin, S., Alay, O., Bonaventure, O.: Experimental evaluation of multipath TCP schedulers. Proceedings of the 2014 ACM SIGCOMM Workshop on Capacity Sharing Workshop, pp. 27–32 (2014)
Abbasloo, S., Yen, C.Y., Chao, H.J.: Wanna make your TCP scheme great for cellular networks? Let machines do it for you! IEEE J. Sel. Areas Commun. 39, 265–279 (2020)
Pokhrel, S.R., Panda, M., Vu, H.L.: Fair coexistence of regular and multipath TCP over wireless last-miles. IEEE Trans. Mob. Comput. 18, 574–587 (2018)
Barré, S., Paasch, C., Bonaventure, O.: Multipath TCP: from theory to practice. International Conference on Research in Networking, pp. 444–457 (2011)
Pokhrel, S.R., Mandjes, M.: Improving multipath TCP performance over wifi and cellular networks: an analytical approach. IEEE Trans. Mobile Comput. 18, 2562–2576 (2018)
Sommers, J., Barford, P.: Cell versus wifi: on the performance of metro area mobile connections. Proceedings of the 2012 Internet Measurement Conference, pp. 301–314 (2012)
Postel, J.: Assigned numbers. RFC 790, USC/Information Sciences Institute (1981)
Ferlin, S., Alay, Ö., Mehani, O., Boreli, R.: Blest: blocking estimation-based MPTCP scheduler for heterogeneous networks. 2016 IFIP Networking Conference (IFIP Networking) and Workshops, pp. 431–439 (2016)
Lim, Y., Nahum, E.M., Towsley, D., Gibbens, R.J.: Ecf: an MPTCP path scheduler to manage heterogeneous paths. Proceedings of the 13th international conference on emerging networking experiments and technologies, pp. 147–159 (2017)
Guo, Y. E., Nikravesh, A., Mao, Z.M., Qian, F., Sen, S.: Accelerating multipath transport through balanced subflow completion. Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, pp. 141–153 (2017)
Adarsh, V., Schmitt, P., Belding, E.: Mptcp performance over heterogenous subpaths. 2019 28th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9 (2019)
Pokhrel, S.R., Choi, J.: Low-delay scheduling for internet of vehicles: load-balanced multipath communication with FEC. IEEE Trans. Commun. 67, 8489–8501 (2019)
Pokhrel, S.R., Garg, S.: Multipath communication with deep q-network for industry 4.0 automation and orchestration. IEEE Transactions on Industrial Informatics (2020)
Pokhrel, S.R., Singh, S.: Compound TCP performance for industry 4.0 wifi: a cognitive federated learning approach. IEEE Trans. Ind. Inf. 17, 2143–2151 (2020)
Chung, J., Han, D., Kim, J., Kim, C.K.: Machine learning based path management for mobile devices over mptcp. 2017 IEEE International Conference on Big Data and Smart Computing (BigComp), pp 206–209 (2017)
Beig, E.F.G.M., Daneshjoo, P., Rezaei, S., Movassagh, A.A., Karimi, R., Qin, Y.: Mptcp throughput enhancement by q-learning for mobile devices. 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), pp. 1171–1176, (2018)
Chiariotti, F., Kucera, S., Zanella, A., Claussen, H.: Analysis and design of a latency control protocol for multi-path data delivery with pre-defined QoS guarantees. IEEE/ACM Trans. Networking 27, 1165–1178 (2019)
Zhang, H., Li, W., Gao, S., Wang, X., Ye, B.: Reles: a neural adaptive multipath scheduler based on deep reinforcement learning. IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1648–1656 (2019)
Pokhrel, S.R., Williamson, C.: (2020)
Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. Proceedings-IEEE INFOCOM (2006)
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)
Pokhrel, S.R.: Federated learning meets blockchain at 6g edge: a drone-assisted networking for disaster response. Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and Beyond, pp 49–54 (2020)
A decentralized federated learning approach for connected autonomous vehicles. 2020 IEEE Wireless Communications and Networking Conference Workshops, pp 1–6 (2020)
Improving TCP performance over wifi for internet of vehicles: a federated learning approach. IEEE Trans. Veh. Technol. 69, 6798–6802 (2020)
Turkovic, B., Kuipers, F.A., Uhlig S.
Zaghal, R.Y., Khan, J.I.: [Online] (2021). Available: http://www.medianet.kent.edu/technicalreports.html
Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: TCP Selective Acknowledgment Options (1996)
Allman, M., Paxson, V., Stevens, W.: TCP Congestion Control, vol. 5681, pp. 27–27. Available online (2021)
Floyd, S., Henderson, T., Gurtov, A.: pp. 27–27. [Online] (2021). Available: https://tools.ietf.org/html/rfc3782
Xu, L., Harfoush, K., Rhee, I.: Binary INCREASE congestion Control (BIC) for Fast Long-Distance Networks. In: Proceedings of the IEEE INFOCOM, pp. 2514–2524 (2004)
Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 42, 64–74 (2008)
Brakmo, L.S., Malley, S.W., Peterson, L.L.: Vegas, new techniques for congestion detection and avoidance. In: Proceedings of the Conference on Communications Architectures, Protocols and Applications, pp. 24–35 (1994)
Wang, J., Wen, J., Zhang, J., Han, Y.: TCP-FIT: an improved TCP congestion control algorithm and its performance. In: Proceedings of the 2011 IEEE INFOCOM, pp. 2894–2902 (2011)
Hock, M., Neumeister, F., Zitterbart, M., Bless, R.: Lola, congestion control for low latencies and high throughput. In: Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), pp. 215–218 (2017)
Mittal, R., Lam, V.T., Dukkipati, N., Blem, E., Wassel, H., Ghobadi, M., Vahdat, A., Wang, Y., Wetherall, D., Zats, D.: TIMELY: RTT-based congestion control for the datacenter. ACM SIGCOMM Comput. Commun. Rev. 45, 537–550 (2015)
Fu, C.P., Liew, S.C.: Veno, TCP enhancement for transmission over wireless access networks. IEEE J. Sel. Areas Commun. 21, 216–228 (2003)
Song, K.T.J., Zhang, Q., Sridharan, M.: Compound TCP: a scalable and TCP-friendly congestion control for high-speed networks. In: Proceedings of the PFLDnet (2006)
Kaneko, K., Fujikawa, T., Su, Z., Katto, J.: TCP-fusion: a hybrid congestion control algorithm for high-speed networks. In: Proceedings of the PFLDnet, vol. 7, pp. 31–36 (2007)
Liu, S., Başar, T., Srikant, R.: TCP-illinois: a loss-and delay-based congestion control algorithm for high-speed networks. Perform. Eval. 65, 417–440 (2008)
Cardwell, N., Cheng, Y., Gunn, C.S., Yeganeh, S.H., Jacobson, V.: BBR: congestion-based congestion control. Commun. ACM 60, 58–66 (2017)
Noda, K., Ito, Y., Muraki, Y.: Study on congestion control of multipath TCP based on web-QoE under heterogeneous environment. In: Proceedings of the IEEE 6th Global Conference on Consumer Electronics (GCCE), pp. 1–3 (2017)
Lubna, T., Mahmud, I., Cho, Y.-Z.D.-L.: pp. 263–268
Cao, Y., Xu, M., Fu, X.: Delay-based congestion control for multipath TCP. In: Proceedings of the 20th IEEE International Conference on Network Protocols (ICNP), pp. 1–10 (2012)
Tsiropoulou, E.E., Katsinis, G.K., Filios, A., Papavassiliou, S.: On the problem of optimal cell selection and uplink power control in open access multi-service two-tier femtocell networks. In: Proceedings of the International Conference on Ad-Hoc Networks and Wireless, pp. 114–127. Springer (2014)
Chao, L., Wu, C., Yoshinaga, T., Bao, W., Ji, Y.: A brief review of multipath TCP for vehicular networks. Sensors 21 (2021)
Lee, W., Lee, J.Y., Joo, H., Kim, H.: An MPTCP-based transmission scheme for improving the control stability of unmanned aerial vehicles. Sensors (2021)
DeepCC: Multi-agent deep reinforcement learning congestion control for multi-path TCP based on self-attention. IEEE Trans. Netw. Serv. Manag. (2021)
Wei, W., Xue, K., Han, J., Wei, D.S., Hong, P.: Shared bottleneck-based congestion control and packet scheduling for multipath TCP. IEEE/ACM Trans. Netw. 28, 653–666 (2020)
Mudassir, M.U., Baig, M.: HCCA, pp. 711–711 (2021)
Chen, M., Liu, Y., Mao, S.: (2014)
Ahmed, E., Yaqoob, I., Hashem, I.A.T., Shuja, J., Imran, M., Guizani, N., Bakhsh, S.T.: Recent advances and challenges in mobile big data. IEEE Commun. Mag. 56, 102–108 (2018)
Fang, H., Zhang, Z., Wang, C.J., Daneshmand, M., Wang, C., Wang, H.
A survey of big data research 29, 6–9 (2015)
Bansal, M., Chana, I., Clarke, S.: A survey on iot big data: current status, 13 v’s challenges, and future directions. ACM Comput. Surv. (CSUR) 53, 1–59 (2020)
Yu, C., Quan, W., Cheng, N., Chen, S., Zhang, H.: Coupled or uncoupled? Multipath TCP congestion control for high-speed railway networks. 2019 IEEE/CIC International Conference on Communications in China (ICCC), pp. 612–617 (2019)
Raiciu, C., Wischik, D., Handley, M.: pp. 27–27. [Online] (2009). Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.376.3473&rep=rep1&type=pdf
Paasch, C., Bonaventure, O.: Multipath TCP. Commun. ACM 57(4):51–57 (2014)
Floyd, S., Henderson, T., Gurtov, A.: The new Reno modification to TCP’s fast recovery algorithm. IETF RFC 3728 (2004)
Lim, Y., Chen, Y.C., Nahum, E.M., Towsley, D., Lee, K.W.: Cross-layer path management in multi-path transport protocol for mobile devices. IEEE INFOCOM 2014-IEEE Conference on Computer Communications, pp. 1815–1823 (2014)
Bae, S., Ban, D., Han, D., Kim, J., Lee, K., Lim, S., Park, W., Kim, C.K.: Streetsense: effect of bus wi-fi aps on pedestrian smartphone. Proceedings of the 2015 Internet Measurement Conference, pp. 347–353 (2015)
Scharf, M., Kiesel, S.: Nxg03-5: head-of-line blocking in TCP and SCTP: analysis and measurements. IEEE Globecom, pp. 1–5 (2006)
Wischik, D., et al.: NSDI'11: 8th USENIX Symposium on Networked Systems Design and Implementation (2011)
Kuhn, N., Lochin, E., Mifdaoui, A., Sarwar, G., Mehani, O., Boreli, R.: Daps: Intelligent delay-aware packet scheduling for multipath transport. In: 2014 IEEE International Conference on Communications (ICC), pp. 1222–1227 (2014)
Liu, Y., Neri, A., Ruggeri, A., Vegni, A.M.: A MPTCP-based network architecture for intelligent train control and traffic management operations. IEEE Trans. Intell. Transp. Syst. 18, 2290–2302 (2016)
Pokhrel, S.R., Jin, J., Vu, H.L.: Mobility-aware multipath communication for unmanned aerial surveillance systems. IEEE Trans. Veh. Technol. 68, 6088–6098 (2019)
Wu, H., Alay, Ö., Brunstrom, A., Ferlin, S., Caso, G.: Peekaboo: learning-based multipath scheduling for dynamic heterogeneous environments. IEEE J. Sel. Areas Commun. 38, 2295–2310 (2020)
Ha, S., Rhee, I., Xu, L.: Cubic: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Operating Syst. Rev. 42, 64–74 (2008)
Dong, M., Li, Q., Zarchy, D., Godfrey, P.B., Schapira, M.: PCC: re-architecting congestion control for consistent high performance. In: Proceedings of the 12th USENIX symposium on networked systems design and implementation (NSDI 15), pp. 395–408 (2015)
Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M.: Industrial internet of things: challenges, opportunities, and directions. IEEE Trans. Industr. Inf. 14, 4724–4734 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Thakur, N.R., Kunte, A.S. (2023). Smart Congestion Control and Path Scheduling in MPTCP. In: Choudrie, J., Mahalle, P., Perumal, T., Joshi, A. (eds) IOT with Smart Systems. Smart Innovation, Systems and Technologies, vol 312. Springer, Singapore. https://doi.org/10.1007/978-981-19-3575-6_71
Download citation
DOI: https://doi.org/10.1007/978-981-19-3575-6_71
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-3574-9
Online ISBN: 978-981-19-3575-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)