Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Fast Line and Ellipse Detection on High Resolution Images

  • Conference paper
  • First Online:
Image and Graphics Technologies and Applications (IGTA 2022)

Abstract

Line and ellipse are important image features in pattern recognition and computer vision. Many methods have been developed to extract line or ellipse in images separately but few try to detect them simultaneously. In this paper, a novel fast line and ellipse detection (FLED) method is proposed to detect line and ellipse simultaneously, even in high resolution images. At first, a detection framework (Pre-SGV) for high detection speed is proposed, which explicitly decomposes the detection into precalculate, segment, grouping, validation phases. Secondly, a simple but efficient algorithm is designed to segment the edges into line or arc candidates. Thirdly, the grouping constraints and fitting methods are further improved. Finally, validation are conducted to exclude erroneous detection. Experiments on synthetic images and real image dataset show that the proposed method, FLED, can robustly detect lines and ellipses fast and efficiently, especially for high resolution image (e.g. remote sensing image, the scanning image).

This work is supported by the Beijing Natural Science Foundation under Grant 7202103.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. Read. Comput. Vis. 8(4), 180–183 (1987)

    Google Scholar 

  2. Canny, J.: A computational approach to edge detection. Read. Comput. Vis. PAMI 8(6), 184–203 (1986)

    Google Scholar 

  3. Ding, W.: Extracting straight lines from building image based on edge orientation image. Acta Optica Sinica 30(10), 2904–2910 (2010)

    Article  Google Scholar 

  4. Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. IPSJ Mag. 13(1), 512–513 (1975)

    Google Scholar 

  5. Etemadi, A.: Robust segmentation of edge data. In: International Conference on Image Processing and Its Applications, pp. 311–314 (1992)

    Google Scholar 

  6. Faugeras, O.D., Deriche, R., Mathieu, H., Ayache, N., Randall, G.: The depth and motion analysis machine. Int. J. Pattern Recognit. Artif. Intell. 6(3), 143–175 (1992)

    Google Scholar 

  7. Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least squares fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 1(5), 253–257 (1996)

    Google Scholar 

  8. Fornaciari, M., Prati, A., Cucchiara, R.: A fast and effective ellipse detector for embedded vision applications. Pattern Recogn. 47(11), 3693–3708 (2014)

    Article  Google Scholar 

  9. Gioi, R.G.V., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–32 (2010)

    Article  Google Scholar 

  10. Guru, D.S., Shekar, B.H., Nagabhushan, P.: A simple and robust line detection algorithm based on small eigenvalue analysis. Pattern Recogn. Lett. 25(1), 1–13 (2004)

    Article  Google Scholar 

  11. Halir, R.: Numerically stable direct least squares fitting of ellipses (1999)

    Google Scholar 

  12. Hough, P.V.C.: Method and means for recognizing complex patterns (1962)

    Google Scholar 

  13. Kahn, P., Kitchen, L., Riseman, E.M.: A fast line finder for vision-guided robot navigation. IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1098–1102 (1990)

    Article  Google Scholar 

  14. Kovesi, P.D.: MATLAB and octave functions for computer vision and image processing (2000)

    Google Scholar 

  15. Lee, Y.S., Koo, H.S., Jeong, C.S.: A straight line detection using principal component analysis. Pattern Recogn. Lett. 27(14), 1744–1754 (2006)

    Article  Google Scholar 

  16. Li, Q., Shi, J., Li, C.: Fast line detection method for railroad switch machine monitoring system. In: International Conference on Image Analysis and Signal Processing, pp. 61–64 (2009)

    Google Scholar 

  17. Li, X., Wang, Y., Deng, Y., Yu, J.: Cell segmentation using ellipse curve segmentation and classification. In: International Conference on Information Science and Engineering, pp. 1187–1190 (2009)

    Google Scholar 

  18. Liu, Z.Y., Qiao, H., Xu, L.: Multisets mixture learning-based ellipse detection. Pattern Recogn. 39(4), 731–735 (2006)

    Article  Google Scholar 

  19. Mclaughlin, R.A., Alder, M.: The hough transform versus the upwrite. IEEE Trans. Pattern Anal. Mach. Intell. 20(4), 396–400 (1997)

    Article  Google Scholar 

  20. Mclaughlin, R., Alder, M.: Technical Report - The Hough Transform versus the UpWrite. University of Western Australia (1997)

    Google Scholar 

  21. Meng, C., Li, Z., Bai, X., Zhou, F.: Arc adjacency matrix-based fast ellipse detection. IEEE Trans. Image Process. 29, 4406–4420 (2020). https://doi.org/10.1109/TIP.2020.2967601

    Article  MathSciNet  Google Scholar 

  22. Meng, C., Xue, J., Hu, Z.: Monocular position-pose measurement based on circular and linear features. In: International Conference on Digital Image Computing: Techniques and Applications (2015)

    Google Scholar 

  23. Nguyen, T.M., Ahuja, S., Wu, Q.M.J.: A real-time ellipse detection based on edge grouping, vol. 5, no. 4, pp. 3280–3286 (2009)

    Google Scholar 

  24. Park, S., Kim, G.W.: Expanded guide circle-based obstacle avoidance for the remotely operated mobile robot. J. Electr. Eng. Technol. 9(3), 1034–1042 (2014)

    Article  Google Scholar 

  25. Poiker, T., Douglas, D.H.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica Int. J. Geogr. Inf. Geovisualization 10(2), 112–122 (1973)

    Article  Google Scholar 

  26. Prasad, D.K., Leung, M.K.H., Cho, S.Y.: Edge curvature and convexity based ellipse detection method. Pattern Recogn. 45(9), 3204–3221 (2012)

    Article  Google Scholar 

  27. Pătrăucean, V., Gurdjos, P., von Gioi, R.G.: A parameterless line segment and elliptical arc detector with enhanced ellipse fitting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 572–585. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_41

    Chapter  Google Scholar 

  28. Qiao, Y., Ong, S.H.: Arc-based evaluation and detection of ellipses. Pattern Recogn. 40(7), 1990–2003 (2007)

    Article  Google Scholar 

  29. Rafael, G.V.G., Jérémie, J., Jean-Michel, M., Gregory, R.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–32 (2010)

    Article  Google Scholar 

  30. Schleicher, D.C.H., Zagar, B.G.: Image processing to estimate the ellipticity of steel coils using a concentric ellipse fitting algorithm. In: International Conference on Signal Processing, pp. 884–890 (2008)

    Google Scholar 

  31. Thamizharasan, S., Baskaran, J., Ramkumar, S.: A new cascaded multilevel inverter topology with voltage sources arranged in matrix structure. J. Electr. Eng. Technol. 10(4), 1553–1558 (2015)

    Article  Google Scholar 

  32. Wong, C.Y., Lin, S.C.F., Ren, T.R., Kwok, N.M.: A survey on ellipse detection methods, pp. 1105–1110 (2012)

    Google Scholar 

  33. Xu, L., Oja, E.: Randomized hough transform (RHT): basic mechanisms, algorithms, and computational complexities. Comput. Vis. Image Underst. 57(2), 131–154 (1993)

    Article  Google Scholar 

  34. Yang, Q., Hu, H., Gui, W., Zhou, S., Zhu, C.: 3-parameter hough ellipse detection algorithm for accurate location of human eyes. J. Multimediad 9(5), 619–626 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Li, D., Li, Z., Meng, C. (2022). A Fast Line and Ellipse Detection on High Resolution Images. In: Wang, Y., Ma, H., Peng, Y., Liu, Y., He, R. (eds) Image and Graphics Technologies and Applications. IGTA 2022. Communications in Computer and Information Science, vol 1611. Springer, Singapore. https://doi.org/10.1007/978-981-19-5096-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5096-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5095-7

  • Online ISBN: 978-981-19-5096-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics