Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sketching How Synthetic Cells Can Function as a Platform to Investigate Chemical AI and Information Theories in the Wetware Domain

  • Conference paper
  • First Online:
Proceedings of Fourth International Conference on Communication, Computing and Electronics Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 977))

Abstract

Recent advancements in synthetic cell construction have made possible the begin of a research program whereby these man-made systems, which resemble biological cells at a minimal complexity level, can be conceived as tools for investigating information and communication theories in the “wetware” domain. In this paper, we will firstly present the field of synthetic biology and the features of synthetic cells (in particular, synthetic cells built from scratch). In the practical field, their potential role as “smart” drug delivery agents is probably one of the most ambitious goals, which needs a well-conceived SC design and advanced features. The latter includes sensing and perception, information transduction, control and programmability. These considerations elicit, at the same time, more general and theoretical questions, here presented as a sort of programmatic discussion. We ask whether and at what extent synthetic cells can be considered a valuable platform for investigating AI, cognition, communication, evolutionary optimization in novel versions: the chemical ones. We will not deal on what AI offers to synthetic biology, but on what synthetic biology offers to AI. By depicting some research paths, here, we intend to stimulate the bottom-up synthetic cells community to look toward such themes, to develop chemical AI in basic and applied sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adamala KP, Martin-Alarcon DA, Guthrie-Honea KR, Boyden ES (2017) Engineering genetic circuit interactions within and between synthetic minimal cells. Nat Chem 9(5):431–439. https://doi.org/10.1038/nchem.2644

    Article  Google Scholar 

  2. Altamura E, Albanese P, Marotta R, Milano F, Fiore M, Trotta M, Stano P, Mavelli F (2021) Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells. Proc Natl Acad Sci U S A 118(7):e2012170118. https://doi.org/10.1073/pnas.2012170118

    Article  Google Scholar 

  3. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2(2006):0028. https://doi.org/10.1038/msb4100073

    Article  Google Scholar 

  4. Chang TMS (1972) Artificial cells. Charles C. Thomas, Springfield, IL

    Google Scholar 

  5. Chang TMS (2019) Artificial cell evolves into nanomedicine, biotherapeutics, blood substitutes, drug delivery, enzyme/gene therapy, cancer therapy, cell/stem cell therapy, nanoparticles, liposomes, bioencapsulation, replicating synthetic cells, cell encapsulation/scaffold, biosorbent/immunosorbent haemoperfusion/plasmapheresis, regenerative medicine, encapsulated microbe, nanobiotechnology, nanotechnology. Artif Cells Nanomedicine Biotechnol 47(1):997–1013

    Article  MathSciNet  Google Scholar 

  6. Damiano L, Hiolle A, Caãmero L (2011) Grounding synthetic knowledge. In: Lenaerts T, Giacobini M, Bersini H, Bourgine P, Dorigo M, Doursat R (eds) Advances in artificial life, ECAL 2011. MIT Press, pp 200–207

    Google Scholar 

  7. Damiano L, Stano P (2018) Synthetic biology and artificial intelligence. Grounding a cross-disciplinary approach to the synthetic exploration of (embodied) cognition. Complex Syst 27:199–228. https://doi.org/10.25088/ComplexSystems.27.3.199

  8. Damiano L, Stano P (2020) On the “life-likeness’’ of synthetic cells. Front Bioeng Biotechnol 8:953. https://doi.org/10.3389/fbioe.2020.00953

    Article  Google Scholar 

  9. Dean SN, Turner KB, Medintz IL, Walper SA (2017) Targeting and delivery of therapeutic enzymes. Ther Deliv 8(7):577–595. https://doi.org/10.4155/tde-2017-0020

    Article  Google Scholar 

  10. Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453. https://doi.org/10.1038/nature04342

    Article  Google Scholar 

  11. Feldman Barrett L (2020) Seven and half lessons about the brain. Picador (Pan Macmillan), London

    Google Scholar 

  12. Friston K, Kilner J, Harrison L (2006) A free energy principle for the brain. J Physiol-Paris 100(1):70–87. https://doi.org/10.1016/j.jphysparis.2006.10.001

    Article  Google Scholar 

  13. Gánti T (1975) Organization of chemical reactions into dividing and metabolizing units: the chemotons. Biosystems 7(1):15–21. https://doi.org/10.1016/0303-2647(75)90038-6

    Article  Google Scholar 

  14. Gentili PL, Stano P (2022) Chemical neural networks inside synthetic cells? A proposal for their realization and modeling. Front Bioeng Biotechnol 10:927110

    Article  Google Scholar 

  15. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56. https://doi.org/10.1126/science.1190719

    Article  Google Scholar 

  16. Grimes PJ, Galanti A, Gobbo P (2021) Bioinspired networks of communicating synthetic protocells. Front Mol Biosci 8

    Google Scholar 

  17. Hellingwerf KJ, Postma PW, Tommassen J, Westerhoff HV (1995) Signal transduction in bacteria: phospho-neural network(s) in Escherichia coli? FEMS Microbiol Rev 16(4):309–321. https://doi.org/10.1111/j.1574-6976.1995.tb00178.x

    Article  Google Scholar 

  18. Karoui H, Patwal PS, Pavan Kumar BVVS, Martin N (2022) Chemical communication in artificial cells: basic concepts, design and challenges. Front Mol Biosci 9

    Google Scholar 

  19. Kolchinsky A, Wolpert DH (2018) Semantic information, autonomous agency and non-equilibrium statistical physics. Interface Focus 8:20180041. https://doi.org/10.1098/rsfs.2018.0041

    Article  Google Scholar 

  20. Krinsky N, Kaduri M, Zinger A, Shainsky-Roitman J, Goldfeder M, Benhar I, Hershkovitz D, Schroeder A (2018) Synthetic cells synthesize therapeutic proteins inside tumors. Adv Healthc Mater 7(9):e1701163. https://doi.org/10.1002/adhm.201701163

    Article  Google Scholar 

  21. Leduc PR, Wong MS, Ferreira PM, Groff RE, Haslinger K, Koonce MP, Lee WY, Love JC, McCammon JA, Monteiro-Riviere NA, Rotello VM, Rubloff GW, Westervelt R, Yoda M (2007) Towards an in vivo biologically inspired nanofactory. Nat Nanotechnol 2(1):3–7. https://doi.org/10.1038/nnano.2006.180

    Article  Google Scholar 

  22. Leduc S (1912) La Biologie Synthétique. Etudes de Biophysique, 1st edn. A. Poinat, Paris. http://www.peiresc.org/bstitre.htm

  23. Lentini R, Martín NY, Forlin M, Belmonte L, Fontana J, Cornella M, Martini L, Tamburini S, Bentley WE, Jousson O, Mansy SS (2017) Two-way chemical communication between artificial and natural cells. ACS Central Sci 3(2):117–123. https://doi.org/10.1021/acscentsci.6b00330

    Article  Google Scholar 

  24. Luisi PL (2002) Toward the engineering of minimal living cells. Anat Rec 268(3):208–214. https://doi.org/10.1002/ar.10155

    Article  Google Scholar 

  25. Luisi PL, Ferri F, Stano P (2006) Approaches to semi-synthetic minimal cells: a review. Die Naturwissenschaften 93(1):1–13. https://doi.org/10.1007/s00114-005-0056-z

    Article  Google Scholar 

  26. MacKay DM (1969) Information, mechanism and meaning. MIT Press, Cambridge, MA

    Book  Google Scholar 

  27. Maturana HR, Varela FJ (1980) Autopoiesis and cognition: the realization of the living, 1st edn. D. Reidel Publishing Company

    Google Scholar 

  28. Moritani Y, Nomura SIM, Morita I, Akiyoshi K (2010) Direct integration of cell-free-synthesized connexin-43 into liposomes and hemichannel formation. FEBS J 277(16):3343–3352. https://doi.org/10.1111/j.1742-4658.2010.07736.x

    Article  Google Scholar 

  29. Muthumanjula M, Bhoopalan R (2022) Detection of white blood cell cancer using deep learning using Cmyk-Moment localisation for information retrieval. J IoT Soc Mob Anal Cloud 4(1):54–72. https://irojournals.com/iroismac/article/pdf/4/1/6

  30. Nakano T, Eckford AW, Haraguchi T (2013) Molecular communications. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  31. Nauta D (1972) The meaning of information. Approaches to semiotics [AS]. Mouton (De Grutyer), The Hague

    Google Scholar 

  32. Noireaux V, Bar-Ziv R, Libchaber A (2003) Principles of cell-free genetic circuit assembly. Proc Natl Acad Sci USA 100(22):12672–12677. https://doi.org/10.1073/pnas.2135496100

    Article  Google Scholar 

  33. Pelletier JF, Sun L, Wise KS, Assad-Garcia N, Karas BJ, Deerinck TJ, Ellisman MH, Mershin A, Gershenfeld N, Chuang RY, Glass JI, Strychalski EA (2021) Genetic requirements for cell division in a genomically minimal cell. Cell 184(9):2430-2440.e16. https://doi.org/10.1016/j.cell.2021.03.008

    Article  Google Scholar 

  34. Rampioni G, D’Angelo F, Leoni L, Stano P (2019) Gene-expressing liposomes as synthetic cells for molecular communication studies. Front Bioeng Biotechnol 7:1. https://doi.org/10.3389/fbioe.2019.00001

    Article  Google Scholar 

  35. Rampioni G, D’Angelo F, Messina M, Zennaro A, Kuruma Y, Tofani D, Leoni L, Stano P (2018) Synthetic cells produce a quorum sensing chemical signal perceived by Pseudomonas aeruginosa. Chem Commun 54:2090–2093. https://doi.org/10.1039/C7CC09678J

    Article  Google Scholar 

  36. Ramundo-Orlando A, Serafino A, Schiavo R, Liberti M, d’Inzeo G (2005) Permeability changes of connexin32 hemi channels reconstituted in liposomes induced by extremely low frequency, low amplitude magnetic fields. Biochim Biophys Acta 1668(1):33–40. https://doi.org/10.1016/j.bbamem.2004.11.003

    Article  Google Scholar 

  37. Smith JM, Chowdhry R, Booth MJ (2022) Controlling synthetic cell–cell communication. Front Mol Biosci 8

    Google Scholar 

  38. Stano P (2022) Chemical neural networks and synthetic cell biotechnology: preludes to chemical AI. In: Proceedings of CIBB 2021—computational intelligence methods for bioinformatics and biostatistics. Lecture notes in bioinformatics. Springer, in press

    Google Scholar 

  39. Stano P, Rampioni G, Roli A, Gentili PL, Damiano L (2022) En route for implanting a minimal chemical perceptron into artificial cells. In: Holler S, Löffler R, Bartlett S (eds) Proceedings of the ALIFE 2022: the 2022 conference on artificial life, 18–22 July 2022. MIT Press, Cambridge, MA, pp 465–467 (online)

    Google Scholar 

  40. Stano P (2019) Gene expression inside liposomes: from early studies to current protocols. Chemistry 25(33). https://doi.org/10.1002/chem.201806445

  41. Stano P (2019) Is research on “synthetic cells’’ moving to the next level? Life 9(1):3. https://doi.org/10.3390/life9010003

    Article  Google Scholar 

  42. Stano P, Rampioni G, Carrara P, Damiano L, Leoni L, Luisi PL (2012) Semi-synthetic minimal cells as a tool for biochemical ICT. BioSystems 109(1):24–34. https://doi.org/10.1016/j.biosystems.2012.01.002

    Article  Google Scholar 

  43. Szostak JW, Bartel DP, Luisi PL (2001) Synthesizing life. Nature 409(6818):387–390. https://doi.org/10.1038/35053176

    Article  Google Scholar 

  44. Varela FJ (1979) Principles of biological autonomy. The North-Holland series in general systems research. Elsevier North-Holland Inc, New York

    Google Scholar 

  45. Varela F, Maturana H, Uribe R (1974) Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5(4):187–196. https://doi.org/10.1016/0303-2647(74)90031-8

    Article  Google Scholar 

  46. Walde P, Ichikawa S (2021) Lipid vesicles and other polymolecular aggregates-from basic studies of polar lipids to innovative applications. Appl Sci 11(21):10345. https://doi.org/10.3390/app112110345

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Luisa Damiano (IULM University, Milan, Italy) for inspiring discussions about autopoiesis, cognition, autonomy, and the sciences of the artificial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Stano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stano, P. (2023). Sketching How Synthetic Cells Can Function as a Platform to Investigate Chemical AI and Information Theories in the Wetware Domain. In: Bindhu, V., Tavares, J.M.R.S., Vuppalapati, C. (eds) Proceedings of Fourth International Conference on Communication, Computing and Electronics Systems . Lecture Notes in Electrical Engineering, vol 977. Springer, Singapore. https://doi.org/10.1007/978-981-19-7753-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7753-4_43

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7752-7

  • Online ISBN: 978-981-19-7753-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics