Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Comparative Analysis of Models for Neural Machine Speech-to-Text Translation for Turkic State Languages

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2024)

Abstract

In this work, we compare and evaluate speech recognition models for the Turkic state languages, namely Azerbaijani, Kazakh, Kyrgyz, Turkish, Turkmen, and Uzbek. For this purpose, experimental studies of neural speech recognition are being conducted for three available open-source models: Whisper is an ASR system by OpenAI, TurkicASR of ISSAI, and The Massively Multilingual Speech (MMS) project of Facebook AI’s initiative. This project represents a key step towards streamlining the process of recording and processing meeting minutes in diverse Turkic languages. The scientific contribution of this article is the comparative analysis and selection of speech recognition models for the Turkic state languages based on ongoing experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Musaev, M., Mussakhojayeva, S., Khujayorov, I., Khassanov, Y., Ochilov, M., Varol, H.A.: USC: An Open-Source Uzbek Speech Corpus and Initial Speech Recognition Experiments (2020). arXiv preprint arXiv:2107.14419

  2. Mussakhojayeva, S., Janaliyeva, A., Mirzakhmetov, A., Khassanov, Y., Varol, H.A.: KazakhTTS: an open-source Kazakh text-to-speech synthesis dataset. In: Proceedings of Interspeech 2021, pp. 2786–2790 (2021). https://doi.org/10.21437/Interspeech.2021-2124. Open-Source Kazakh Text-to-Speech Synthesis Dataset arXiv preprint arXiv:2104.08459

  3. Mamyrbayev, O., Alimhan, K., Zhumazhanov, B., Turdalykyzy, T., Gusmanova, F.: End-to-End Speech Recognition in Agglutinative Languages. In: Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds.) Intelligent Information and Database Systems: 12th Asian Conference, ACIIDS 2020, Phuket, Thailand, March 23–26, 2020, Proceedings, Part II, pp. 391–401. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-42058-1_33

    Chapter  Google Scholar 

  4. Mamyrbayev, O., Alimhan, K., Oralbekova, D., Bekarystankyzy, A., Zhumazhanov, B.: Identifying the influence of transfer learning method in developing an end-to-end automatic speech recognition system with a low data level. Eastern-Eur. J. Enterp. Technol. 1(9(115)), 84–92 (2022). https://doi.org/10.15587/1729-4061.2022.252801

    Article  Google Scholar 

  5. Mamyrbayev, O.Z., Oralbekova, D.O., Alimkhan, K., Othman M., Zhumazhanov, B.: Application of a hybrid integral model for Kazakh speech recognition (in Russian). In: News of the National academy of sciences of the republic of Kazakhstan, vol. 1, № 341, pp. 58–68 (2022)

    Google Scholar 

  6. Khassanov, Y., Mussakhojayeva, S., Mirzakhmetov, A., Adiyev, A., Nurpeiissov, M., Varol, H.A.: A crowdsourced open-source Kazakh speech corpus and initial speech recognition baseline. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 697–706. Association for Computational Linguistics (2021)

    Google Scholar 

  7. Mussakhojayeva, S., Dauletbek, K., Yeshpanov, R., Varol, H.A. Multilingual speech recognition for Turkic languages. Information 14, 74 (2023). https://doi.org/10.3390/info14020074

  8. Balabekova, T., Kairatuly, B., Tukeyev, Ur.: Kazakh-Uzbek speech cascade machine translation on complete set of endings. In: Nguyen, N.T., Botzheim, J., Gulyás, L., Nunez, M., Treur, J., Vossen, G., Kozierkiewicz, A. (eds.) Advances in Computational Collective Intelligence: 15th International Conference, ICCCI 2023, Budapest, Hungary, September 27–29, 2023, Proceedings, pp. 430–442. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-41774-0_34

    Chapter  Google Scholar 

  9. Radford, A., Kim, J.W., et al.: Robust speech recognition via large-scale weak supervision. In: ICML. 23–29 Jul 2023, vol. 202 of Proceedings of Machine Learning Research, pp. 28492–28518. PMLR (2023)

    Google Scholar 

  10. Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., et al.: ESPnet: end-to-end speech processing toolkit. In: Proceedings of the Interspeech, Hyderabad, India, 2–6 September 2018, pp. 2207–2211 (2018)

    Google Scholar 

  11. Ardila, R., et al.: Common voice: a massively-multilingual speech corpus. In: Proceedings of the Language Resources and Evaluation Conference (LREC), Marseille, France, 11–16 May 2020; European Language Resources Association: Marseille, France, pp. 4218–4222 (2020)

    Google Scholar 

  12. Russian Open Speech-to-Text Dataset. https://github.com/snakers4/open_stt

  13. Pratap, V., et al.: Scaling speech technology to 1,000+ languages. arXiv:2305.13516 (2023)

  14. Baevski, A., Zhou, H., Mohamed, A., Auli. M.: wav2vec 2.0: a framework for self-supervised learning of speech representations. arXiv:2006.11477 https://doi.org/10.48550/arXiv.2006.11477

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dauren Nurmaganbet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nurmaganbet, D., Tukeyev, U., Shormakova, A., Zhumanov, Z. (2024). Comparative Analysis of Models for Neural Machine Speech-to-Text Translation for Turkic State Languages. In: Nguyen, N.T., et al. Intelligent Information and Database Systems. ACIIDS 2024. Lecture Notes in Computer Science(), vol 14796. Springer, Singapore. https://doi.org/10.1007/978-981-97-4985-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-4985-0_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-4984-3

  • Online ISBN: 978-981-97-4985-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics