Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

STMGF: An Effective Spatial-Temporal Multi-granularity Framework for Traffic Forecasting

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14850))

Included in the following conference series:

  • 666 Accesses

Abstract

Accurate Traffic Prediction is a challenging task in intelligent transportation due to the spatial-temporal aspects of road networks. The traffic of a road network can be affected by long-distance or long-term dependencies where existing methods fall short in modeling them. In this paper, we introduce a novel framework known as Spatial-Temporal Multi-Granularity Framework (STMGF) to enhance the capture of long-distance and long-term information of the road networks. STMGF makes full use of different granularity information of road networks and models the long-distance and long-term information by gathering information in a hierarchical interactive way. Further, it leverages the inherent periodicity in traffic sequences to refine prediction results by matching with recent traffic data. We conduct experiments on two real-world datasets, and the results demonstrate that STMGF outperforms all baseline models and achieves state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonald, T., Charpentier, B., Galland, A., Hollocou, A.: Hierarchical graph clustering using node pair sampling. arXiv preprint arXiv:1806.01664 (2018)

  2. Chen, C., Petty, K., Skabardonis, A., Varaiya, P., Jia, Z.: Freeway performance measurement system: mining loop detector data. Transp. Res. Rec. 1748(1), 96–102 (2001)

    Article  Google Scholar 

  3. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)

  4. Grossberg, S.: Recurrent neural networks. Scholarpedia 8(2), 1888 (2013)

    Article  Google Scholar 

  5. Guo, K., Hu, Y., Sun, Y., Qian, S., Gao, J., Yin, B.: Hierarchical graph convolution network for traffic forecasting. In: Proceedings of AAAI, vol. 35, pp. 151–159 (2021)

    Google Scholar 

  6. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of AAAI, vol. 33, pp. 922–929 (2019)

    Google Scholar 

  7. Guo, S., Lin, Y., Wan, H., Li, X., Cong, G.: Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE TKDE 34(11), 5415–5428 (2021)

    Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Jagadish, H.V., et al.: Big data and its technical challenges. Commun. ACM 57(7), 86–94 (2014)

    Article  Google Scholar 

  10. Jiang, J., Han, C., Zhao, W.X., Wang, J.: PDFormer: propagation delay-aware dynamic long-range transformer for traffic flow prediction. arXiv preprint arXiv:2301.07945 (2023)

  11. Lan, S., Ma, Y., Huang, W., Wang, W., Yang, H., Li, P.: DSTAGNN: dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In: ICML, pp. 11906–11917. PMLR (2022)

    Google Scholar 

  12. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)

  13. Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE T-ITS 14(2), 871–882 (2013)

    Google Scholar 

  14. Medsker, L.R., Jain, L.: Recurrent neural networks. Des. Appl. 5(64–67), 2 (2001)

    Google Scholar 

  15. Sahili, Z.A., Awad, M.: Spatio-temporal graph neural networks: a survey. arXiv preprint arXiv:2301.10569 (2023)

  16. Shao, Z., et al.: Decoupled dynamic spatial-temporal graph neural network for traffic forecasting. arXiv preprint arXiv:2206.09112 (2022)

  17. Shin, Y., Yoon, Y.: PGCN: progressive graph convolutional networks for spatial-temporal traffic forecasting. arXiv preprint arXiv:2202.08982 (2022)

  18. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14, 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  19. Song, C., Lin, Y., Guo, S., Wan, H.: Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting. In: Proceedings of AAAI, vol. 34, pp. 914–921 (2020)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. NIPS 30 (2017)

    Google Scholar 

  21. Wang, X., et al.: Traffic flow prediction via spatial temporal graph neural network. In: Proceedings of the Web Conference 2020, pp. 1082–1092 (2020)

    Google Scholar 

  22. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of SIGKDD, pp. 753–763 (2020)

    Google Scholar 

  23. Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph WaveNet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)

  24. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)

  25. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by Shandong Provincial Natural Science Foundation (No ZR2022QF114).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitao Yuan or Ning Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Z., Yuan, H., Jiang, N., Chen, M., Liu, N., Li, Z. (2024). STMGF: An Effective Spatial-Temporal Multi-granularity Framework for Traffic Forecasting. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14850. Springer, Singapore. https://doi.org/10.1007/978-981-97-5552-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5552-3_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5551-6

  • Online ISBN: 978-981-97-5552-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics