Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DYOLO: A Novel Object Detection Model for Multi-scene and Multi-object Based on an Improved D-Net Split Task Model is Proposed

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14866))

Included in the following conference series:

  • 468 Accesses

Abstract

This paper proposes a novel network model named DYOLO, aimed at improving the accuracy and real-time performance of object detection tasks. This model combines the dynamic feature fusion capability of D-Net with the high-speed detection performance of YOLOv8n. We designed a new convolutional module, DConv, by incorporating the dynamic large convolution kernel (DLK) and dynamic feature fusion (DFF) modules from the D-Net network structure, and applied this module to improve the C2f modules in the backbone and Neck of YOLOv8n. These improvements enable the model to more effectively capture and fuse multi-scale features, enhancing the utilization of global contextual information. Experimental results demonstrate that the improved model achieves higher accuracy and better adaptability in object detection tasks across different scenarios, as verified on public datasets such as NWPU VHR-10 and RSOD, as well as our self-built Car dataset. Furthermore, while maintaining the original real-time performance of YOLOv8n, the model enhances the capability to capture both local details and overall scene information. This study provides a novel solution for object detection tasks in various scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gui, S., Song, S., Qin, R., Tang, Y.: Remote sensing object detection in the deep learning Era—a review. Remote Sens. 16(2), 327 (2024)

    Google Scholar 

  2. Ravindran, R., Santora, M.J., Jamali, M.M.: Multi-object detection and tracking, based on DNN, for autonomous vehicles: a review. IEEE Sens. J. 21(5), 5668–5677 (2021)

    Article  Google Scholar 

  3. Gupta, C., Gill, N.S., Gulia, P., et al.: A novel finetuned YOLOv8 model for real-time underwater trash detection. J. Real-Time Image Proc. 21(2), 48 (2024)

    Google Scholar 

  4. Wang, G., Chen, Y., An, P., Hong, H., Hu, J., Huang, T.: UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios. Sensors 23, 7190 (2023)

    Article  Google Scholar 

  5. Yang, J., Qiu, P., Zhang, Y., Marcus, D.S., Sotiras, A.: D-Net: dynamic large kernel with dynamic feature fusion for volumetric medical image segmentation. ArXiv (2024)

    Google Scholar 

  6. Zha, C., Luo, S., Xu, X.: Infrared multi-target detection and tracking in dense urban traffic scenes. IET Image Proc. 18(6), 1613–1628 (2024)

    Article  Google Scholar 

  7. Gragnaniello, D., Greco, A., Saggese, A., Vento, M., Vicinanza, A.: Benchmarking 2D multi-object detection and tracking algorithms in autonomous vehicle driving scenarios. Sensors 23(8), 4024 (2023)

    Google Scholar 

  8. Dang, M., Liu, G., Xu, Q., Li, K., Wang, D., He, L.: Multi-object behavior recognition based on object detection for dense crowds. Expert Syst. Appl. 248, 123397 (2024)

    Article  Google Scholar 

  9. Zhang, H., Li, W., Qi, Y., Liu, H., Li, Z.: Dynamic fry counting based on multi-object tracking and one-stage detection. Comput. Electron. Agric. 209, 107871 (2023)

    Article  Google Scholar 

  10. Oreski, G.: YOLO*C—Adding context improves YOLO performance. Neurocomputing 555, 126655 (2023)

    Article  Google Scholar 

  11. Li, S., Huang, H., Meng, X., Wang, M., Li, Y., Xie, L.: A glove-wearing detection algorithm based on improved YOLOv8. Sensors 23(24), 9906 (2023)

    Google Scholar 

  12. Xiao, B., Nguyen, M., Yan, W.Q.: Fruit ripeness identification using YOLOv8 model. Multimed Tools Appl. 83, 28039–28056 (2024)

    Article  Google Scholar 

  13. Chen, F., Deng, M., Gao, H., Yang, X., Zhang, D.: NHD-YOLO: improved YOLOv8 using optimized neck and head for product surface defect detection with data augmentation. IET Image Proc. 18(7), 1915–1926 (2024)

    Article  Google Scholar 

  14. Jiang, T., Li, C., Yang, M., Wang, Z.: An Improved YOLOv5s algorithm for object detection with an attention mechanism. Electronics 11(16), 2494 (2022)

    Google Scholar 

  15. Duan, S., Gao, X., Xia, C., Ge, B.: A2TPNet: alternate steered attention and trapezoidal pyramid fusion network for RGB-D salient object detection. Electronics 11(1968), (2022)

    Google Scholar 

  16. Gao, F., Cai, Y., Deng, F., Yu, C., Chen, J.: Feature alignment in anchor-free object detection. IEEE Trans. Circ. Syst. Video Technol. 33(8), 3799–3810 (2023)

    Article  Google Scholar 

  17. Xu, C., Zhang, J., Wang, M., Tian, G., Liu, Y.: Multilevel spatial-temporal feature aggregation for video object detection. In: IEEE Trans. Circ. Syst. Video Technol. 32(11), 7809–7820 (2022)

    Google Scholar 

  18. Sugashini, T.: YOLO glass: video-based smart object detection using squeeze and attention YOLO network. SIViP 18, 2105–2115 (2024)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongcheng Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, H. et al. (2024). DYOLO: A Novel Object Detection Model for Multi-scene and Multi-object Based on an Improved D-Net Split Task Model is Proposed. In: Huang, DS., Zhang, X., Guo, J. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14866. Springer, Singapore. https://doi.org/10.1007/978-981-97-5594-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5594-3_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5593-6

  • Online ISBN: 978-981-97-5594-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics