Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Text-to-Image Generation with Multiscale Semantic Context-Aware Generative Adversarial Networks

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14873))

Included in the following conference series:

  • 449 Accesses

Abstract

Synthesizing complex images from textual descriptions presents a significant challenge. Relying on tremendous training data and model size, recent Diffusion, Autoregressive and GAN models have made significant progress in synthesizing photo-realistic images. However, the high computing budget and hardware requirements due to the large data and model size hinder the flexibility of employing these models. This paper introduces Multiscale Semantic Context-Aware Generative Adversarial Networks (MSCA-GAN), which achieves strong text alignment with limited data while balancing generation quality and efficiency. The proposed MSCA-GAN incorporates innovative modules for textual semantic injection, delivery, and validation. Specifically, the Semantic Adaptive Affine Fusion (SAAF) module dynamically adjusts expression weights of textual semantic information to align with the feature generation process, encompassing global to detailed aspects. Furthermore, the CrossBlock Context Aware Encoding (CCAE) module explicitly establishes semantic context across different synthesis blocks during the local feature delivery. Finally, MSCA-GAN introduces an additional CLIP guidance term to verify the semantic consistency of local features at various scales. MSCA-GAN is pre-trained on the CC3M and CC12M datasets, which only contain limited data. Extensive experiments confirm that the MSCA-GAN performs competitively in terms of image quality and generation efficiency, both quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balaji, Y., et al.: eDiffI: text-to-image diffusion models with an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324 (2022)

  2. Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12 m: pushing webscale image-text pre-training to recognize long-tail visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568 (2021)

    Google Scholar 

  3. Ding, M., et al.: Cogview: Mastering text-to-image generation via transformers. Adv. Neural. Inf. Process. Syst. 34, 19822–19835 (2021)

    Google Scholar 

  4. Ding, M., Zheng, W., Hong, W., Tang, J.: CogView2: faster and better text-toimage generation via hierarchical transformers. Adv. Neural. Inf. Process. Syst. 35, 16890–16902 (2022)

    Google Scholar 

  5. Gu, S., et al.: Vector quantized diffusion model for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10696–10706 (2022)

    Google Scholar 

  6. Härkönen, E., Aittala, M., Kynkäänniemi, T., Laine, S., Aila, T., Lehtinen, J.: Disentangling random and cyclic effects in time-lapse sequences (2022)

    Google Scholar 

  7. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Klambauer, G., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a nash equilibrium. CoRR abs/1706.08500 (2017). http://arxiv.org/abs/1706.08500

  8. Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. In: International Conference on Machine Learning, pp. 4904–4916. PMLR (2021)

    Google Scholar 

  9. Kang, M., et al.: Scaling up gans for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10124–10134 (2023)

    Google Scholar 

  10. Karras, T., et al.: Alias-free generative adversarial networks. Adv. Neural. Inf. Process. Syst. 34, 852–863 (2021)

    Google Scholar 

  11. Krishna, R., et al.: Visual Genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123, 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  12. Li, J., Li, D., Xiong, C., Hoi, S.: Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning, pp. 12888–12900. PMLR (2022)

    Google Scholar 

  13. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21(1), 5485–5551 (2020)

    MathSciNet  Google Scholar 

  14. Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 1(2), 3 (2022)

  15. Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821–8831 (2021)

    Google Scholar 

  16. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  17. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)

    Google Scholar 

  18. Sauer, A., Chitta, K., Müller, J., Geiger, A.: Projected gans converge faster. Adv. Neural. Inf. Process. Syst. 34, 17480–17492 (2021)

    Google Scholar 

  19. Sauer, A., Karras, T., Laine, S., Geiger, A., Aila, T.: StyleGAN-T: unlocking the power of gans for fast large-scale text-to-image synthesis. arXiv preprint arXiv:2301.09515 (2023)

  20. Sauer, A., Schwarz, K., Geiger, A.: StyleGAN-XL: scaling Style-GAN to large diverse datasets. In: Special Interest Group on Computer Graphics and Interactive Techniques Conference Proceedings (2022). https://doi.org/10.1145/3528233.3530738

  21. Schuhmann, C., et al.: Laion-5b: an open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 35, 25278–25294 (2022)

    Google Scholar 

  22. Tao, M., Bao, B.K., Tang, H., Xu, C.: Galip: generative adversarial clips for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14214–14223 (2023)

    Google Scholar 

  23. Tao, M., et al.: DF-GAN: a simple and effective baseline for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16515–16525 (2022)

    Google Scholar 

  24. Wu, C., et al.: NÜWA: visual synthesis pre-training for neural visual world creation. In: European Conference on Computer Vision, pp. 720–736. Springer (2022). https://doi.org/10.1007/978-3-031-19787-1_41

  25. Yu, J., et al.: Scaling autoregressive models for content-rich text-to-image generation. arXiv preprint arXiv:2206.10789

  26. Zhou, Y., et al.: Towards language-free training for text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17907–17917 (2022)

    Google Scholar 

Download references

Acknowledgment

This work is supported in part by the Key R&D Program of Shandong Province, China (Grant no. 2023CXGC010801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, P., Wu, L., Meng, L., Meng, X. (2024). Text-to-Image Generation with Multiscale Semantic Context-Aware Generative Adversarial Networks. In: Huang, DS., Pan, Y., Guo, J. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14873. Springer, Singapore. https://doi.org/10.1007/978-981-97-5615-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5615-5_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5614-8

  • Online ISBN: 978-981-97-5615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics