Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Artificial Intelligence Based Diagnosis of Parkinson’s Disorders

  • Chapter
  • First Online:
Data Analysis for Neurodegenerative Disorders

Part of the book series: Cognitive Technologies ((COGTECH))

  • 339 Accesses

Abstract

Parkinson is a neurodegenerative disorder which affects a considerable fraction of the global population. Early and accurate diagnosis of Parkinson is essential for proper treatment and disease management. Artificial intelligence (AI) has emerged as a promising tool in the field of medical diagnosis, including PD. AI algorithms can analyze large datasets of patient information, including medical records, imaging data, and patient histories, to identify patterns and predict the likelihood of PD. Machine learning (ML) and deep learning (DL) algorithms have been trained on various data sources to diagnose PD with high accuracy, sensitivity, and specificity. AI-based approaches to PD diagnosis have also led to the development of new tools, including wearable sensors and mobile apps that can monitor patients’ movements and track changes in their condition. While AI-based PD diagnosis is still in its early stages, the potential for this technology to improve patient outcomes is significant. However, it is essential to continue improving AI algorithms and incorporating them into clinical practice to ensure their safety and effectiveness while diagnosing Parkinson and its treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kalia, L.V., Lang, A.E.: Parkinson’s disease. Lancet 386(9996), 896–912 (2015). https://doi.org/10.1016/S0140-6736(14)61393-3

    Article  Google Scholar 

  2. Espay, A.J., Bonato, P., Nahab, F.B., et al.: Technology in Parkinson’s disease: challenges and opportunities. Mov. Disord. 31(9), 1272–1282 (2016). https://doi.org/10.1002/mds.26642

    Article  Google Scholar 

  3. Mestre, T.A., Lang, A.E.: Using wearable technology to monitor motor symptoms in Parkinson’s disease. CNS Drugs 33(3), 231–238 (2019). https://doi.org/10.1007/s40263-019-00609-8

    Article  Google Scholar 

  4. Fagherazzi, G., Elisei, S., Galvagni, L., et al.: Wearable devices for monitoring the physical and psychological symptoms of patients with Parkinson’s disease in their daily life: a systematic review. J. Med. Internet Res. 21(7), e12885 (2019). https://doi.org/10.2196/12885

    Article  Google Scholar 

  5. Arora, S., Venkataraman, V., Donohue, S.J., Biglan, K.M., Dorsey, E.R., Little, M.A.: High accuracy discrimination of Parkinson’s disease participants from healthy controls using smartphones. Mov. Disord. 33(12), 1894–1896 (2018). https://doi.org/10.1002/mds.27537

    Article  Google Scholar 

  6. Del Din, S., Godfrey, A., Mazzà, C., Lord, S., Rochester, L.: Free-living monitoring of Parkinson’s disease: lessons from the field. Mov. Disord. 31(9), 1293–1313 (2016). https://doi.org/10.1002/mds.26658

    Article  Google Scholar 

  7. Schrag, A., Quinn, N.: Dyskinesias and motor fluctuations in Parkinson’s disease. A community-based study. Brain 123(Pt 11), 2297–2305 (2000). https://doi.org/10.1093/brain/123.11.2297

    Article  Google Scholar 

  8. Saxena, M., & Ahuja, S.: Comparative survey of machine learning techniques for prediction of Parkinson’s disease. In: 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN), 248–253. IEEE (2020)

    Google Scholar 

  9. Wu, J., Liu, C., Fu, H., et al.: Deep learning in Parkinson’s disease: a review. Front. Neurol. 10, 876 (2019). https://doi.org/10.3389/fneur.2019.00876

    Article  Google Scholar 

  10. Marek, K., Jennings, D., Lasch, S., et al.: The Parkinson progression marker initiative (PPMI). ProgNeurobiol. 95(4), 629–663 (2011). https://doi.org/10.1016/j.pneurobio.2011.09.005

    Article  Google Scholar 

  11. Goetz, C.G., Fahn, S., Martinez-Martin, P., et al.: Movement disorder society-sponsored revision of the Unified Parkinson’s disease rating scale (MDS-UPDRS): process, format, and clinimetric testing plan. Mov. Disord. 22(1), 41–47 (2007). https://doi.org/10.1002/mds.21198

    Article  Google Scholar 

  12. Nalls, M.A., Blauwendraat, C., Vallerga, C.L., et al.: Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18(12), 1091–1102 (2019). https://doi.org/10.1016/S1474-4422(19)30320-5

    Article  Google Scholar 

  13. Maetzler, W., Klucken, J., Horne, M.: A clinical view on the development of technology-based tools in managing Parkinson’s disease. Mov. Disord. 31(9), 1263–1271 (2016). https://doi.org/10.1002/mds.26602

    Article  Google Scholar 

  14. Dorsey, E.R., Constantinescu, R., Thompson, J.P., et al.: Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5), 384–386 (2007). https://doi.org/10.1212/01.wnl.0000247740.47667.03

    Article  Google Scholar 

  15. Tsanas, A., Little, M.A., McSharry, P.E., et al.: A methodology for the analysis of wearable sensor data for Parkinson’s disease detection and monitoring. IEEE J. Biomed. Health Inform. 16(6), 1198–1210 (2012). https://doi.org/10.1109/JBHI.2012.2201412

    Article  Google Scholar 

  16. Oppedal, K., Ferreira, J.J., Pihlstrøm, L., et al.: Predicting Parkinson’s disease using pattern recognition of rest tremor accelerometry data. Parkinsonism Relat. Disord. 36, 17–22 (2017). https://doi.org/10.1016/j.parkreldis.2016.11.015

    Article  Google Scholar 

  17. Cheng, B., Zhang, D., Wang, Y., et al.: Multimodal classification of Parkinson’s disease based on comprehensive feature fusion using deep belief networks. Neurocomputing 275, 3029–3040 (2018). https://doi.org/10.1016/j.neucom.2017.11.071

    Article  Google Scholar 

  18. Delrobaei, M., Darwish, H., Jimenez-Shahed, J.: Automated Parkinson’s disease detection from handwritten spiral drawings using machine learning: a preliminary study. J. Neurol. Sci. 386, 10–16 (2018). https://doi.org/10.1016/j.jns.2018.01.037

    Article  Google Scholar 

  19. Chen, X., Xie, Y., Zheng, Y., et al.: An MRI-based deep learning method for detection of Parkinson’s disease. Neurocomputing 405, 118–124 (2020). https://doi.org/10.1016/j.neucom.2020.04.084

    Article  Google Scholar 

  20. Arora, S., Nandedkar, A., Gupta, A., et al.: Comparison of support vector machine and logistic regression in detecting Parkinson’s disease using gait data. J. Med. Syst. 41(6), 98 (2017). https://doi.org/10.1007/s10916-017-0741-6

    Article  Google Scholar 

  21. Tsipouras, M.G., Rigas, G., Tzallas, A.T., et al.: On the detection of tremor intensity in Parkinson’s disease using a wearable device. IEEE Trans. Inf. Technol. Biomed. 13(6), 864–873 (2009). https://doi.org/10.1109/TITB.2009.2032011

    Article  Google Scholar 

  22. Li, Y., Li, X., Li, H., et al.: Deep learning for diagnosis of Parkinson’s disease: a feasibility study. Front. Aging Neurosci. 10, 13 (2018). https://doi.org/10.3389/fnagi.2018.00013

    Article  Google Scholar 

  23. Saxena, M., Ahuja, S., Narayan, R.: Artificial neural network in prediction of Parkinson’s disease. Solid State Technol. 63(6), 21475–21483 (2020)

    Google Scholar 

  24. Ma, Y., Feng, Z., Wang, Y., Liang, X.: Early detection of Parkinson’s disease using multiple types of non-motor symptoms: a machine learning approach. Front. Neurol. 11, 31 (2020)

    Google Scholar 

  25. Kostikis, N., Hristu-Varsakelis, D., Arnaoutoglou, M., Kotsavasiloglou, C.: A review on the computational methods for the diagnosis of Parkinson’s disease. IEEE Trans. Inf Technol. Biomed. 19(4), 1191–1202 (2015)

    Google Scholar 

  26. Tian, J., Guo, L., Zheng, Y., Yang, X.: Parkinson’s disease detection based on voice samples using deep belief networks. IEEE J. Biomed. Health Inform. 20(3), 988–998 (2016)

    Google Scholar 

  27. Bot, B.M., Suver, C., Neto, E.C., Kellen, M., Klein, A., Bare, C., Doerr, M.: The mPower study, Parkinson disease mobile data collected using research kit. Sci. Data 3, 160011 (2016)

    Google Scholar 

  28. Wang, L., Shen, D., Shen, H., Zeng, Y.: Machine learning in diagnosis of Parkinson’s disease: current status and future possibilities. Front. Aging Neurosci. 12, 220 (2020)

    Google Scholar 

  29. Ethical challenges of artificial intelligence in healthcare. Lancet Digital Health 1(1), e1–e2 (2018)

    Google Scholar 

  30. Delrobaei, M., Darwish, H., Jimenez-Shahed, J.: Automated Parkinson’s disease detection from handwritten spiral drawings using machine learning: a preliminary study. J. Neurol. Sci. 386, 10–16 (2018)

    Google Scholar 

  31. Javidnia, H., Mohammadi-Asl, J.: A review of artificial intelligence applications in Parkinson’s disease: clinical and technical issues. J. Med. Signals Sensors 9(1), 1–14 (2019)

    Google Scholar 

  32. Sánchez-Ferro, Á., Matarazzo, M., Montero-Escribano, P.: New technologies and early diagnosis of Parkinson’s disease. Front. Neurol. 10, 100 (2019)

    Google Scholar 

  33. Maetzler, W., Klucken, J., Horne, M., Aminian, K.: Movement disorders and technology: how the technical progress can assist in screening, diagnosis, and monitoring of movement disorders. Movement Disorders 28(11), 1620–1630 (2013)

    Google Scholar 

  34. Reynolds, J.J., Hochberg, D., Barborica, A., Pervolarakis, K., Nair, G., Brown, T., O’Connor, K.: Sensitivity and specificity of deep learning for visual and automated diagnosis of Parkinson’s disease. Lancet Digital Health 1(7), e344–e352 (2019)

    Google Scholar 

  35. He, Y., Zhang, J., Zhao, Y., Xie, B., Yao, L.: Prediction of Parkinson’s disease progression using deep recurrent neural networks from a telemonitoring platform. J. Med. Syst. 43(10), 307 (2019)

    Google Scholar 

  36. Asadi, H., et al.: Parkinson’s disease diagnosis using random forest. SN Comput. Sci. 1(2), 77 (2020)

    Google Scholar 

  37. Zhan, Y., et al.: A deep learning model for Parkinson’s disease diagnosis. IEEE J. Biomed. Health Inform. 22(6), 1779–1787 (2018)

    Google Scholar 

  38. Rahmani, M., et al.: Parkinson’s disease diagnosis using convolutional neural networks and graph theory. J. Neurosci. Methods 354, 109106 (2021)

    Google Scholar 

  39. Yoo, K., et al.: Automated classification of Parkinson’s disease using resting-state functional MRI. PLoS ONE 15(10), e0240378 (2020)

    Google Scholar 

  40. Azami, H., et al.: A hybrid machine learning approach for Parkinson’s disease diagnosis using gait analysis. J. Neurosci. Methods 344, 108850 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalli Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamini, Rani, S., Bashir, A.K. (2023). Artificial Intelligence Based Diagnosis of Parkinson’s Disorders. In: Koundal, D., Jain, D.K., Guo, Y., Ashour, A.S., Zaguia, A. (eds) Data Analysis for Neurodegenerative Disorders. Cognitive Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-99-2154-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-2154-6_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-2153-9

  • Online ISBN: 978-981-99-2154-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics