Abstract
The sparsity of user check-in trajectory data is a great challenge faced by point of interest (POI) recommendation. To alleviate the data sparsity, existing research often utilizes the geographic and time information in check-in trajectory data to discover the hidden spatio-temporal relations. However, existing models only consider the spatio-temporal relationship between locations, ignoring that between POI categories. To further reduce the negative impact of data sparsity, motivated by the method to integrate the spatio-temporal relationship by attention mechanism in LSTPM, this paper proposes a POI recommendation model based on double-level spatio-temporal relationship in locations and categories-(POI2TS). POI2TS integrates the spatio-temporal relationship between locations and that between categories through attention mechanism to more accurately capture users’ preferences. The test results on the NYC and TKY datasets show that POI2TS is more accurate compared with the state-of-the-art models, which verifies that integrating the spatio-temporal relationship between locations and that between categories can effectively improve POI recommendation models.
This work is supported by the State Key Laboratories Development Program of China Development Fund for Key Laboratory of Energy and Electric Power Knowledge Calculation in Hebei Province (HBKCEP202202) and the Open Fund of Information Security Evaluation Center of Civil Aviation University of China (ISECCA-202002).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Islam, M.A., Mohammad, M.M., Das, S.S.S., Ali, M.E.: A survey on deep learning based Point-of-Interest (POI) recommendations. Neurocomputing 472, 306–325 (2022)
Da’u, A., Salim, N.: Recommendation system based on deep learning methods: a systematic review and new directions. Artif. Intell. Rev. 53(4), 2709–2748 (2019). https://doi.org/10.1007/s10462-019-09744-1
Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model with spatial and temporal contexts. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 194–200 (2016)
Sun, K., Qian, T., Chen, T., Liang, Y., Nguyen, Q.V.H., Yin, H.: Where to go next: modeling long-and short-term user preferences for point-of-interest recommendation. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp.214–221 (2020)
Zhao, P., Luo, A., Liu, Y., Xu, J., Li, Z., Zhuang, F., et al.: Where to go next: a spatio-temporal gated network for next POI recommendation. IEEE Trans. Knowl. Data Eng. 34(5), 2512–2524 (2020)
Rao, X., Chen, L., Liu, Y., Shang, S., Yao, B., Han, P.: Graph-flashback network for next location recommendation. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1463–1471(2022)
Luo, Y., Liu, Q., Liu, Z.: Stan: spatio-temporal attention network for next location recommendation. In: Proceedings of the Web Conference 2021, pp. 2177–2185 (2021)
Yu, F., Cui, L., Guo, W., Lu, X., Li, Q., Lu, H.: A category-aware deep model for successive POI recommendation on sparse check-in data. In: Proceedings of the Web Conference 2020, pp.1264–1274 (2020)
Wu, Y., Li, K., Zhao, G., Qian, X.: Personalized long-and short-term preference learning for next POI recommendation. IEEE Trans. Knowl. Data Eng. 34(4), 1944–1957 (2020)
Zang, H., Han, D., Li, X.: Cha: categorical hierarchy-based attention for next POI recommendation. ACM Trans. Inf. Syst. 40(1), 1–22 (2021)
Li, Y., Chen, T., Luo, Y., Yin, H., Huang, Z.: Discovering collaborative signals for next POI recommendation with iterative Seq2Graph augmentation. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pp. 1491–1497 (2021)
Ji, W., Meng, X., Zhang, Y.: STARec: adaptive learning with spatiotemporal and activity influence for POI recommendation. ACM Trans. Inf. Syst. 40(4), 1–40 (2021)
Dong, Z., Meng, X., Zhang, Y.: Exploiting category-level multiple characteristics for POI recommendation. IEEE Trans. Knowl. Data Eng. 35(02), 1488–1501 (2023)
Feng, J., et al.: DeepMove: predicting human mobility with attentional recurrent networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 1459–1468 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Li, J., Li, X. (2024). POI Recommendation Based on Double-Level Spatio-Temporal Relationship in Locations and Categories. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1967. Springer, Singapore. https://doi.org/10.1007/978-981-99-8178-6_44
Download citation
DOI: https://doi.org/10.1007/978-981-99-8178-6_44
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8177-9
Online ISBN: 978-981-99-8178-6
eBook Packages: Computer ScienceComputer Science (R0)