Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ASM: Adaptive Sample Mining for In-The-Wild Facial Expression Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

Given the similarity between facial expression categories, the presence of compound facial expressions, and the subjectivity of annotators, facial expression recognition (FER) datasets often suffer from ambiguity and noisy labels. Ambiguous expressions are challenging to differentiate from expressions with noisy labels, which hurt the robustness of FER models. Furthermore, the difficulty of recognition varies across different expression categories, rendering a uniform approach unfair for all expressions. In this paper, we introduce a novel approach called Adaptive Sample Mining (ASM) to dynamically address ambiguity and noise within each expression category. First, the Adaptive Threshold Learning module generates two thresholds, namely the clean and noisy thresholds, for each category. These thresholds are based on the mean class probabilities at each training epoch. Next, the Sample Mining module partitions the dataset into three subsets: clean, ambiguity, and noise, by comparing the sample confidence with the clean and noisy thresholds. Finally, the Tri-Regularization module employs a mutual learning strategy for the ambiguity subset to enhance discrimination ability, and an unsupervised learning strategy for the noise subset to mitigate the impact of noisy labels. Extensive experiments prove that our method can effectively mine both ambiguity and noise, and outperform SOTA methods on both synthetic noisy and original datasets. The supplement material is available at https://github.com/zzzzzzyang/ASM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242. PMLR (2017)

    Google Scholar 

  2. Barsoum, E., Zhang, C., Ferrer, C.C., Zhang, Z.: Training deep networks for facial expression recognition with crowd-sourced label distribution. In: Proceedings of the 18th ACM International Conference on Multimodal Interaction, pp. 279–283 (2016)

    Google Scholar 

  3. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, pp. 92–100 (1998)

    Google Scholar 

  4. Farzaneh, A.H., Qi, X.: Facial expression recognition in the wild via deep attentive center loss. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2402–2411 (2021)

    Google Scholar 

  5. Goodfellow, I.J., et al.: Challenges in representation learning: a report on three machine learning contests. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8228, pp. 117–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42051-1_16

    Chapter  Google Scholar 

  6. Guo, L.Z., Li, Y.F.: Class-imbalanced semi-supervised learning with adaptive thresholding. In: Proceedings of the 39th International Conference on Machine Learning, pp. 8082–8094 (2022)

    Google Scholar 

  7. Guo, L.Z., Zhang, Y.G., Wu, Z.F., Shao, J.J., Li, Y.F.: Robust semi-supervised learning when not all classes have labels. In: Advanced Neural Information Processing Systems, vol. 35, pp. 3305–3317 (2022)

    Google Scholar 

  8. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  9. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  11. Li, J., Socher, R., Hoi, S.C.: DIVIDEMIX: learning with noisy labels as semi-supervised learning. arXiv preprint arXiv:2002.07394 (2020)

  12. Li, S., Deng, W., Du, J.: Reliable crowdsourcing and deep locality-preserving learning for expression recognition in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2852–2861 (2017)

    Google Scholar 

  13. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  14. Malach, E., Shalev-Shwartz, S.: Decoupling “when to update” from “how to update”. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  15. Mollahosseini, A., Hasani, B., Mahoor, M.H.: AffectNet: a database for facial expression, valence, and arousal computing in the wild. IEEE Trans. Affect. Comput. 10(1), 18–31 (2017)

    Article  Google Scholar 

  16. Nigam, K., Ghani, R.: Analyzing the effectiveness and applicability of co-training. In: Proceedings of the Ninth International Conference on Information and Knowledge Management, pp. 86–93 (2000)

    Google Scholar 

  17. Sarfraz, F., Arani, E., Zonooz, B.: Noisy concurrent training for efficient learning under label noise. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3159–3168 (2021)

    Google Scholar 

  18. Shao, J., Wu, Z., Luo, Y., Huang, S., Pu, X., Ren, Y.: Self-paced label distribution learning for in-the-wild facial expression recognition. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 161–169 (2022)

    Google Scholar 

  19. She, J., Hu, Y., Shi, H., Wang, J., Shen, Q., Mei, T.: Dive into ambiguity: latent distribution mining and pairwise uncertainty estimation for facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6248–6257 (2021)

    Google Scholar 

  20. Sindhwani, V., Niyogi, P., Belkin, M.: A co-regularization approach to semi-supervised learning with multiple views. In: Proceedings of ICML Workshop on Learning with Multiple Views, vol. 2005, pp. 74–79. Citeseer (2005)

    Google Scholar 

  21. Wang, K., Peng, X., Yang, J., Lu, S., Qiao, Y.: Suppressing uncertainties for large-scale facial expression recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6897–6906 (2020)

    Google Scholar 

  22. Wang, K., Peng, X., Yang, J., Meng, D., Qiao, Y.: Region attention networks for pose and occlusion robust facial expression recognition. IEEE Trans. Image Process. 29, 4057–4069 (2020)

    Article  Google Scholar 

  23. Wang, Y., et al.: FreeMatch: self-adaptive thresholding for semi-supervised learning. arXiv preprint arXiv:2205.07246 (2022)

  24. Wei, H., Feng, L., Chen, X., An, B.: Combating noisy labels by agreement: a joint training method with co-regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13726–13735 (2020)

    Google Scholar 

  25. Zeng, J., Shan, S., Chen, X.: Facial expression recognition with inconsistently annotated datasets. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 227–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_14

    Chapter  Google Scholar 

  26. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  27. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  28. Zhang, Y., Wang, C., Deng, W.: Relative uncertainty learning for facial expression recognition. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  29. Zhang, Y., Wang, C., Ling, X., Deng, W.: Learn from all: Erasing attention consistency for noisy label facial expression recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision-ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVI. pp. 418–434. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_24

Download references

Acknowledgments

This work was supported by the National Key R &D Programme of China (2022YFC3803202), Major Project of Anhui Province under Grant 202203a05020011. This work was done in Anhui Province Key Laboratory of Affective Computing and Advanced Intelligent Machine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Sun, X., An, L., Wang, M. (2024). ASM: Adaptive Sample Mining for In-The-Wild Facial Expression Recognition. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8469-5_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8468-8

  • Online ISBN: 978-981-99-8469-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics