Abstract
We introduce a novel algebraic approach for attacking the McEliece cryptosystem which is currently at the 4-th round of the NIST competition. The contributions of the article are twofold. (1) We present a new distinguisher on alternant and Goppa codes working in a much broader range of parameters than [FGO+11]. (2) With this approach we also provide a polynomial–time key recovery attack on alternant codes which are distinguishable with the distinguisher [FGO+11].
These results are obtained by introducing a subspace of matrices representing quadratic forms. Those are associated with quadratic relations for the component-wise product in the dual of the Goppa (or alternant) code of the cryptosystem. It turns out that this subspace of matrices contains matrices of unusually small rank in the case of alternant or Goppa codes (2 or 3 depending on the field characteristic) revealing the secret polynomial structure of the code. MinRank solvers can then be used to recover the secret key of the scheme. We devise a dedicated algebraic modeling in characteristic 2 where the Gröbner basis techniques to solve it can be analyzed. This computation behaves differently when applied to the matrix space associated with a random code rather than with a Goppa or an alternant code. This gives a distinguisher of the latter code families, which contrarily to the one proposed in [FGO+11] working only in a tiny parameter regime is now able to work for code rates above \(\frac{2}{3}\). It applies to most of the instantiations of the McEliece cryptosystem in the literature. It coincides with the one of [FGO+11] when the latter can be applied (and is therefore of polynomial complexity in this case). However, its complexity increases significantly when [FGO+11] does not apply anymore, but stays subexponential as long as the co-dimension of the code is sublinear in the length (with an asymptotic exponent which is below those of all known key recovery or message attacks). For the concrete parameters of the McEliece NIST submission [ABC+22], its complexity is way too complex to threaten the cryptosystem, but is smaller than known key recovery attacks for most of the parameters of the submission. This subspace of quadratic forms can also be used in a different manner to give a polynomial time attack of the McEliece cryptosystem based on generic alternant codes or Goppa codes provided that these codes are distinguishable by the method of [FGO+11], and in the Goppa case we need the additional assumption that its degree is less than \(q-1\), where q is the alphabet size of the code.
This work was partly funded by the French Agence Nationale de la Recherche through the France 2023 ANR project ANR-22-PETQ-0008PQ-TLS and the ANR-21-CE390009-BARRACUDA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albrecht, M., et al.: Classic McEliece (merger of Classic McEliece and NTS-KEM) (2022). https://classic.mceliece.org. Fourth round finalist of the NIST post-quantum cryptography call
Bardet, M.: Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie. Ph.D. thesis, Université Paris VI (2004). http://tel.archives-ouvertes.fr/tel-00449609/en/
Banegas, G., et al.: DAGS: key encapsulation for dyadic GS codes (2017). https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/DAGS.zip. First round submission to the NIST post-quantum cryptography call
Bardet, M., Briaud, P., Bros, M., Gaborit, P., Tillich, J.-P.: Revisiting algebraic attacks on MinRank and on the rank decoding problem (2022). arXiv:2208.05471
Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_17
Barelli, É., Couvreur, A.: An efficient structural attack on NIST submission DAGS. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 93–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_4
Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2_6
Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_6
Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of the F\({}_5\) Gröbner basis algorithm. J. Symbolic Comput. 70, 49–70 (2015)
Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): how \(1+1=0\) improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31
Barreto, P.S.L.M., Lindner, R., Misoczki, R.: Monoidic codes in cryptography. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 179–199. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_12
Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 143–158. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_10
Bernstein, D.J., Lange, T., Peters, C.: Wild McEliece incognito. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 244–254. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_16
Both, L., May, A.: Optimizing BJMM with nearest neighbors: full decoding in \(2^{2/21 n}\) and McEliece security. In: WCC Workshop on Coding and Cryptography (2017)
Bardet, M., Mora, R., Tillich, J.-P.: Polynomial time key-recovery attack on high rate random alternant codes. CoRR, abs/2304.14757 (2023)
Couvreur, A., et al.: Big Quake (2017). https://bigquake.inria.fr. NIST Round 1 submission for Post-Quantum Cryptography
Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theory 44(1), 367–378 (1998)
Cascudo, I., Cramer, R., Mirandola, D., Zémor, G.: Squares of random linear codes. IEEE Trans. Inf. Theory 61(3), 1159–1173 (2015)
Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 157–174. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_10
Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.-P.: Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes. Des. Codes Cryptogr. 73(2), 641–666 (2014)
Couvreur, A., Mora, R., Tillich, J.-P.: A new approach based on quadratic forms to attack the McEliece cryptosystem. arXiv preprint arXiv:2306.10294 (2023)
Couvreur, A., Otmani, A., Tillich, J.-P.: New identities relating wild Goppa codes. Finite Fields Appl. 29, 178–197 (2014)
Couvreur, A., Otmani, A., Tillich, J.-P.: Polynomial time attack on wild McEliece over quadratic extensions. IEEE Trans. Inf. Theory 63(1), 404–427 (2017)
Canto Torres, R., Sendrier, N.: Analysis of information set decoding for a sub-linear error weight. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 144–161. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_10
Dumer, I.: Two decoding algorithms for linear codes. Probl. Inf. Transm. 25(1), 17–23 (1989)
Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero: F5. In: Proceedings ISSAC 2002, pp. 75–83. ACM Press (2002)
Faugère, J.-C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.-P.: A distinguisher for high rate McEliece cryptosystems. In: Proceedings of the IEEE Information Theory Workshop, ITW 2011, Paraty, Brasil, pp. 282–286 (2011)
Faugère, J.-C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.-P.: A distinguisher for high rate McEliece cryptosystems. IEEE Trans. Inf. Theory 59(10), 6830–6844 (2013)
Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_16
Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_14
Faugère, J.-C., Perret, L., de Portzamparc, F.: Algebraic attack against variants of McEliece with Goppa polynomial of a special form. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 21–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_2
Faugère, J.-C., El Din, M.S., Spaenlehauer, P.-J.: Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology. In: International Symposium on Symbolic and Algebraic Computation, ISSAC 2010, Munich, Germany, 25–28 July 2010, pp. 257–264 (2010)
Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_4
Ghorpade, S.R., Krattenthaler, C.: The Hilbert series of Pfaffian rings. In: Christensen, C., Sathaye, A., Sundaram, G., Bajaj, C. (eds.) Algebra, Arithmetic and Geometry with Applications, pp. 337–356. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18487-1_22
Gauthier-Umaña, V., Leander, G.: Practical key recovery attacks on two McEliece variants. IACR Cryptology ePrint Archive, Report 2009/509 (2009)
Herzog, J., Trung, N.V.: Gröbner bases and multiplicity of determinantal and Pfaffian ideals. Adv. Math. 96(1), 1–37 (1992)
Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_2
Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_5
Loidreau, P., Sendrier, N.: Weak keys in the McEliece public-key cryptosystem. IEEE Trans. Inf. Theory 47(3), 1207–1211 (2001)
Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_24
McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp. 114–116. Jet Propulsion Lab, 1978. DSN Progress Report 44
May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6
May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_9
Márquez-Corbella, I., Pellikaan, R.: Error-correcting pairs for a public-key cryptosystem. CBC 2012, Code-based Cryptography Workshop (2012). http://www.win.tue.nl/ruudp/paper/59.pdf
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1986)
Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Graduate Texts in Mathematics, vol. 227. Springer, New York (2005)
Mora, R., Tillich, J.-P.: On the dimension and structure of the square of the dual of a Goppa code. In: Workshop on Coding Theory and Cryptography, WCC 2022 (2022)
Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)
Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
Sendrier, N.: Finding the permutation between equivalent linear codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser, S. (ed.) FOCS, pp. 124–134 (1994)
Sidelnikov, V.M., Shestakov, S.O.: On the insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Math. Appl. 1(4), 439–444 (1992)
Stern, J.: A method for finding codewords of small weight. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989). https://doi.org/10.1007/BFb0019850
Verbel, J., Baena, J., Cabarcas, D., Perlner, R., Smith-Tone, D.: On the complexity of “superdetermined’’ minrank instances. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 167–186. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_10
Wiedemann, D.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory 32(1), 54–62 (1986)
Wimmer, M.: Algorithm923: efficient numerical computation of the Pfaffian for dense and banded skew-symmetric matrices. ACM Trans. Math. Softw. 38(4) (2012)
Acknowledgement
The authors would like to thank the anonymous reviewers, the shepherd and Daniel J. Bernstein for their comments and their help in improving the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 International Association for Cryptologic Research
About this paper
Cite this paper
Couvreur, A., Mora, R., Tillich, JP. (2023). A New Approach Based on Quadratic Forms to Attack the McEliece Cryptosystem. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14441. Springer, Singapore. https://doi.org/10.1007/978-981-99-8730-6_1
Download citation
DOI: https://doi.org/10.1007/978-981-99-8730-6_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8729-0
Online ISBN: 978-981-99-8730-6
eBook Packages: Computer ScienceComputer Science (R0)