Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Review of Point Cloud 3D Object Detection Methods Based on Deep Learning

  • Conference paper
  • First Online:
Computer Applications (CCF NCCA 2023)

Abstract

Based on introducing the coupling relationship between deep learning and three-dimensional point clouds, this paper reviews the three characteristics and research problems of point clouds, randomness, sparsity, and unstructuredness, and discusses three-dimensional point cloud target detection based on deep neural networks, including point cloud detection techniques following graph convolution, detection techniques following the original point cloud, and detection algorithms based on fusion processing of graph convolution and the original point cloud. Focusing on future research direction and development, the field of point cloud analysis is currently undergoing further development through the application of deep learning techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, B., Ouyang, W., Sheng, L., et al.: Gs3D: an efficient 3D object detection framework for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1019–1028 (2019)

    Google Scholar 

  2. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

  3. Ku, J., Mozifian, M., Lee, J., et al.: Joint 3D proposal generation and object detection from view aggregation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–8. IEEE (2018)

    Google Scholar 

  4. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 1440–1448 (2015)

    Google Scholar 

  5. Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2015)

    Article  Google Scholar 

  6. Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2015)

    Google Scholar 

  7. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  8. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525 (2017)

    Google Scholar 

  9. Ma, X., Hovy, E.: End-to-end sequence labelling via bi-directional LSTM-CNNs-CRF. In: 54th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 1064–1074 (2016)

    Google Scholar 

  10. Yoon, S., Kim, E.: Temporal classification error compensation of convolutional neural network for traffic sign recognition. In: International Conference on Control Engineering and Artificial Intelligence (CCEAI) (2017)

    Google Scholar 

  11. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4490–4499 (2018)

    Google Scholar 

  12. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6526–6534 (2017)

    Google Scholar 

  13. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 77–85 (2017)

    Google Scholar 

  14. Kim, K., Kim, C., Jang, C., Kim, J., Kim, H.: Deep learning-based dynamic object classification using LiDAR point cloud augmented by layer-based accumulation for intelligent vehicles. Exp. Syst. Appl. 167, 113861 (2020)

    Article  Google Scholar 

  15. Zermas, D., Izzat, I., Papanikolopoulos, N.: Fast segmentation of 3D point clouds: a paradigm on LiDAR data for autonomous vehicle applications. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5067–5073 (2017)

    Google Scholar 

  16. Bisheng, Y., Ronggang, H., Jianping, L., Jian, Y., Jiayuan, L.: Automated reconstruction of building LoDs from airborne LiDAR point clouds using an improved morphological scale space. Remote Sens. 9(1), 14 (2016)

    Article  Google Scholar 

  17. Ene, L.T., Næsset, E., Gobakken, T., Gregoire, T.G.: Large-scale estimation of change in aboveground biomass in miombo woodlands using airborne laser scanning and national forest inventory data. Remote Sens. Environ. 188, 106–117 (2017)

    Article  Google Scholar 

  18. Chen, C., Li, X., Belkacem, A.N., Zhang, H., Xiang, S.: The mixed kernel function SVM-based point cloud classification. Int. J. Precis. Eng. Manuf. 20(5), 737–747 (2019)

    Article  Google Scholar 

  19. Ni, H., Lin, X., Zhang, J.: Classification of ALS point cloud with improved point cloud segmentation and random forests. Remote Sens. 9(3), 288 (2017)

    Article  Google Scholar 

  20. Weinmann, M., Jutzi, B., Hinz, S., Mallet, C.: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. Photogramm. Remote Sens. 105(7), 286–304 (2015)

    Article  Google Scholar 

  21. Chan, C.W., Paelinckx, D.: Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 112(6), 2999–3011 (2008)

    Article  Google Scholar 

  22. Lalonde, J.F., Unnikrishnan, R., Vandapel, N., Hebert, M.: Scale selection for classification of point-sampled 3D surfaces. In: The Fifth International Conference on 3D Digital Imaging and Modelling, 3DIM 2005, pp. 285–292. IEEE (2005)

    Google Scholar 

  23. Han, Y., Sun, H., Lu, Y., Zhong, R., Ji, C., Xie, S.: 3D point cloud generation based on multi-sensor fusion. Appl. Sci. 12(19), 9433 (2022)

    Article  Google Scholar 

  24. Niemeyer, J., Rottensteiner, F., Soergel, U.: Contextual classification of LiDAR data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sens. 87, 152–165 (2014)

    Article  Google Scholar 

  25. Munoz, D., Bagnell, J.A., Vandapel, N., Hebert, M.: Contextual classification with functional maxmargin Markov networks. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 975–982 (2009)

    Google Scholar 

  26. Shapovalov, R., Velizhev, E., Barinova, O.: Nonassociative Markov networks for 3D point cloud classification. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2010)

    Google Scholar 

  27. Munoz, D., Bagnell, J.A., Vandapel, N., Hebert, M.: Contextual classification with functional max-margin Markov networks. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 975–982 (2009)

    Google Scholar 

  28. Niemeyer, J., Rottensteiner, F., Soergel, U.: Contextual classification of LiDAR data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sens. 87(1), 152–165 (2014)

    Article  Google Scholar 

  29. Maturana, D., Scherer, S.: Voxnet: A 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928 (2015)

    Google Scholar 

  30. Wu, Z., Song, S., Khosla, A., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  31. Cohen, T.S., Geiger, M., Köhler, J., et al.: Spherical CNNs. arXiv preprint arXiv:1801.10130 (2018)

  32. You, Y., Lou, Y., Liu, Q., et al.: Pointwise rotation-invariant network with adaptive sampling and 3D spherical voxel convolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12717–12724 (2020)

    Google Scholar 

  33. Riegler, G., Osman Ulusoy, A., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

    Google Scholar 

  34. Wang, Y., Tian, Y., Li, G., et al.: A review of 3D object detection based on convolutional neural network. Pattern Recogn. Artif. Intell. 34(12), 1103–1119 (2011)

    Google Scholar 

  35. Guo, Y. L., Wang, H., Hu, Q., et al.: Deep learning for 3D point clouds: a survey. arXiv preprint arXiv:1912.12033 (2019)

  36. Qi, C. R., Su, H., Mo, K., et al.: PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE CVPR, pp. 652–660 (2017)

    Google Scholar 

  37. Blanco, L., Sellés, D.G., Guinau, M., et al.: Machine learning-based Rockfalls detection with 3D point clouds, example in the Montserrat Massif (Spain). Remote Sens. 14(17), 4306 (2022)

    Article  Google Scholar 

  38. Dabetwar, S., Kulkarni, N. N., Angelosanti, M., Niezrecki, C., Sabato, A.: Sensitivity analysis of unmanned aerial vehicle-borne 3D point cloud reconstruction from infrared images. J. Build. Eng. 58, 105070 (2022)

    Google Scholar 

  39. Li, T., et al.: Gait recognition using spatio-temporal information of 3D point cloud via Millimeter Wave Radar. Wirel. Commun. Mob. Comput. 2022, 1–16 (2022)

    Google Scholar 

  40. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  41. Kalogerakis, E., Averkiou, M., Maji, S., et al.: 3D shape segmentation with projective convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3779–3788 (2017)

    Google Scholar 

  42. Qi, C.R., Su, H., Niessner, M., et al.: Volumetric and multi-view CNNs for object classification on 3D data. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5648–5656 (2016)

    Google Scholar 

  43. Duc-Phong, N., et al.: Automatic part segmentation of facial anatomies using geometric deep learning toward a computer-aided facial rehabilitation. Eng. Appl. Artif. Intell. 119, 105832 (2023)

    Article  Google Scholar 

  44. Hao, H., Yu, J., Yin, L., Cai, G., Zhang, S., Zhang, H.: An improved PointNet++ point cloud segmentation model applied to automatic measurement method of pig body size. Comput. Electron. Agric. 205, 107560 (2023)

    Article  Google Scholar 

  45. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–779. IEEE, Piscataway (2019)

    Google Scholar 

  46. Chen, Y., Liu, S., Shen, X., et al.: Fast point R-CNN. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9775–9784 (2019)

    Google Scholar 

  47. Yan, Y., Mao, Y., Li, B.: Second: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018)

    Article  Google Scholar 

  48. Mac, G., Guoy, Y., Yang, J., et al.: Learning multiview representation with LSTM for 3D shape recognition and retrieval. IEEE Trans. Multimedia 21(5), 1169–1182 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Lin, J., Yang, L., Wang, S. (2024). A Review of Point Cloud 3D Object Detection Methods Based on Deep Learning. In: Zhang, M., Xu, B., Hu, F., Lin, J., Song, X., Lu, Z. (eds) Computer Applications. CCF NCCA 2023. Communications in Computer and Information Science, vol 1959. Springer, Singapore. https://doi.org/10.1007/978-981-99-8764-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8764-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8763-4

  • Online ISBN: 978-981-99-8764-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics