Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DAG-Based Task Scheduling Optimization in Heterogeneous Distributed Systems

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2012))

Abstract

The scheduling of tasks with limited resources in cloud computing systems has been a popular research topic. One approach to addressing this problem is to employ dynamic voltage and frequency scaling (DVFS) techniques to further constrain energy consumption. In this paper, we investigate the scheduling of directed acyclic graph (DAG) tasks in heterogeneous distributed systems while considering both resource and energy constraints. We aim to decrease the duration required for task scheduling. To accomplish this, we propose a task scheduling framework that takes into account energy constraints, which provides an initial solution at the start. Additionally, we introduce a heuristic, the firefly algorithm, to further enhance the initial solution. Finally, we conduct experiments with various settings and parameters, and the experimental statistics demonstrate our suggested method exhibits a performance gain that is at least twice as significant as that of other benchmark algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Demeulemeester, E., Vanhoucke, M., Herroelen, W.: RanGen: a random network generator for activity-on-the-node networks. J. Sched. 6(1), 17–38 (2003). https://doi.org/10.1023/A:1022283403119

    Article  MathSciNet  Google Scholar 

  2. Gao, N., Xu, C., Peng, X., Luo, H., Wu, W., Xie, G.: Energy-efficient scheduling optimization for parallel applications on heterogeneous distributed systems. J. Circ. Syst. Comput. 29(13), 2050203 (2020). https://doi.org/10.1142/S0218126620502035

    Article  Google Scholar 

  3. Huang, K., Jing, M., Jiang, X., Chen, S., Liu, Z.: Task-level aware scheduling of energy-constrained applications on heterogeneous multi-core system. Electronics 9(12), 2077 (2020). https://doi.org/10.3390/electronics9122077

    Article  Google Scholar 

  4. Li, J., Xie, G., Li, K., Tang, Z.: Enhanced parallel application scheduling algorithm with energy consumption constraint in heterogeneous distributed systems. J. Circ. Syst. Comput. 28(11), 1950190 (2019). https://doi.org/10.1142/S0218126619501901

    Article  Google Scholar 

  5. Li, J., et al.: Multiobjective oriented task scheduling in heterogeneous mobile edge computing networks. IEEE Trans. Veh. Technol. 71(8), 8955–8966 (2022). https://doi.org/10.1109/TVT.2022.3174906

    Article  MathSciNet  Google Scholar 

  6. Li, K.: Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers. IEEE Trans. Comput. 61(12), 1668–1681 (2012). https://doi.org/10.1109/TC.2012.120

    Article  MathSciNet  Google Scholar 

  7. Li, K.: Energy and time constrained task scheduling on multiprocessor computers with discrete speed levels. J. Parallel Distrib. Comput. 95, 15–28 (2016). https://doi.org/10.1016/j.jpdc.2016.02.006

    Article  Google Scholar 

  8. Li, K.: Power and performance management for parallel computations in clouds and data centers. J. Comput. Syst. Sci. 82(2), 174–190 (2016). https://doi.org/10.1016/j.jcss.2015.07.001

    Article  MathSciNet  Google Scholar 

  9. Quan, Z., Wang, Z.J., Ye, T., Guo, S.: Task scheduling for energy consumption constrained parallel applications on heterogeneous computing systems. IEEE Trans. Parallel Distrib. Syst. 31(5), 1165–1182 (2019). https://doi.org/10.1109/TPDS.2019.2959533

    Article  Google Scholar 

  10. Song, J., Xie, G., Li, R., Chen, X.: An efficient scheduling algorithm for energy consumption constrained parallel applications on heterogeneous distributed systems. In: 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications (ISPA/IUCC), pp. 32–39 (2017). https://doi.org/10.1109/ISPA/IUCC.2017.00015

  11. Tian, Z., Chen, L., Li, X., Feng, J., Xu, J.: Multi-core power management through deep reinforcement learning. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2021)

    Google Scholar 

  12. Weiser, M., Welch, B., Demers, A., Shenker, S.: Scheduling for reduced CPU energy. In: Imielinski, T., Korth, H.F. (eds.) Mobile Computing. The Kluwer International Series in Engineering and Computer Science, vol. 353, pp. 449–471. Springer, Boston (1994). https://doi.org/10.1007/978-0-585-29603-6_17

    Chapter  Google Scholar 

  13. Xiao, X., Xie, G., Li, R., Li, K.: Minimizing schedule length of energy consumption constrained parallel applications on heterogeneous distributed systems. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 1471–1476. IEEE (2016). https://doi.org/10.1109/TrustCom.2016.0230

  14. Xie, G., Huang, J., Li, Y.L.R., Li, K.: System-level energy-aware design methodology towards end-to-end response time optimization. IEEE Trans. Comput.-Aided Design Integr. Circ. Syst. 1 (2019). https://doi.org/10.1109/TCAD.2019.2921350

  15. Xie, G., Jiang, J., Liu, Y., Li, R., Li, K.: Minimizing energy consumption of real-time parallel applications using downward and upward approaches on heterogeneous systems. IEEE Trans. Industr. Inf. 13(3), 1068–1078 (2017). https://doi.org/10.1109/TII.2017.2676183

    Article  Google Scholar 

  16. Xie, G., Xiao, X., Peng, H., Li, R., Li, K.: A survey of low-energy parallel scheduling algorithms. IEEE Trans. Sustain. Comput. 7(1), 27–46 (2021). https://doi.org/10.1109/TSUSC.2021.3057983

    Article  Google Scholar 

  17. Xie, G., Zeng, G., Jiang, J., Fan, C., Li, R., Li, K.: Energy management for multiple real-time workflows on cyber-physical cloud systems. Futur. Gener. Comput. Syst. 105, 916–931 (2020). https://doi.org/10.1016/j.future.2017.05.033

    Article  Google Scholar 

  18. Xie, G., Zeng, G., Xiao, X., Li, R., Li, K.: Energy-efficient scheduling algorithms for real-time parallel applications on heterogeneous distributed embedded systems. IEEE Trans. Parallel Distrib. Syst. 28(12), 3426–3442 (2017). https://doi.org/10.1109/TPDS.2017.2730876

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, C., Zhu, J. (2024). DAG-Based Task Scheduling Optimization in Heterogeneous Distributed Systems. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2012. Springer, Singapore. https://doi.org/10.1007/978-981-99-9637-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9637-7_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9636-0

  • Online ISBN: 978-981-99-9637-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics