Abstract
We exploit null vectors of the fractional Virasoro algebra of the symmetric product orbifold to compute correlation functions of twist fields in the large N limit. This yields a new method to derive correlation functions in these orbifold CFTs that is purely based on the symmetry algebra. We explore various generalisations, such as subleading (torus) contributions or correlation functions of other fields than the bare twist fields. We comment on the consequences of our computation for the AdS3/CFT2 correspondence.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys.185 (1997) 197 [hep-th/9608096] [INSPIRE].
J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE].
N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP04 (1999) 017 [hep-th/9903224] [INSPIRE].
R. Dijkgraaf, J.M. Maldacena, G.W. Moore and E.P. Verlinde, A Black hole Farey tail, hep-th/0005003 [INSPIRE].
T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP09 (2014) 118 [arXiv:1405.5137] [INSPIRE].
M.R. Gaberdiel and R. Gopakumar, Higher Spins & Strings, JHEP11 (2014) 044 [arXiv:1406.6103] [INSPIRE].
M.R. Gaberdiel and R. Gopakumar, Stringy Symmetries and the Higher Spin Square, J. Phys.A 48 (2015) 185402 [arXiv:1501.07236] [INSPIRE].
O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE].
J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept.369 (2002) 549 [hep-th/0203048] [INSPIRE].
R. Dijkgraaf, Instanton strings and hyperKähler geometry, Nucl. Phys.B 543 (1999) 545 [hep-th/9810210] [INSPIRE].
J. de Boer, Large N elliptic genus and AdS/CFT correspondence, JHEP05 (1999) 017 [hep-th/9812240] [INSPIRE].
J.M. Maldacena, G.W. Moore and A. Strominger, Counting BPS black holes in toroidal Type II string theory, hep-th/9903163 [INSPIRE].
F. Larsen and E.J. Martinec, U(1) charges and moduli in the D1–D5 system, JHEP06 (1999) 019 [hep-th/9905064] [INSPIRE].
R. Argurio, A. Giveon and A. Shomer, Superstrings on AdS3and symmetric products, JHEP12 (2000) 003 [hep-th/0009242] [INSPIRE].
M.R. Gaberdiel and I. Kirsch, Worldsheet correlators in AdS3/C F T2, JHEP04 (2007) 050 [hep-th/0703001] [INSPIRE].
A. Dabholkar and A. Pakman, Exact chiral ring of AdS3/C F T2, Adv. Theor. Math. Phys.13 (2009) 409 [hep-th/0703022] [INSPIRE].
M.R. Gaberdiel and R. Gopakumar, Tensionless string spectra on AdS3, JHEP05 (2018) 085 [arXiv:1803.04423] [INSPIRE].
L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, The Worldsheet Dual of the Symmetric Product CFT, JHEP04 (2019) 103 [arXiv:1812.01007] [INSPIRE].
L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, Deriving the AdS3/CFT2Correspondence, arXiv:1911.00378 [INSPIRE].
L. Eberhardt and M.R. Gaberdiel, String theory on AdS3and the symmetric orbifold of iouville theory, Nucl. Phys.B 948 (2019) 114774 [arXiv:1903.00421].
A. Dei, L. Eberhardt and M.R. Gaberdiel, Three-point functions in AdS3/CFT2holography, JHEP12 (2019) 012 [arXiv:1907.13144] [INSPIRE].
A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys.B 241 (1984) 333 [INSPIRE].
V.G. Knizhnik and A.B. Zamolodchikov, Current Algebra and Wess-Zumino Model in Two-Dimensions, Nucl. Phys.B 247 (1984) 83 [INSPIRE].
A.B. Zamolodchikov, Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory, Theor. Math. Phys.65 (1985) 1205 [INSPIRE].
V.A. Fateev and A.B. Zamolodchikov, Conformal Quantum Field Theory Models in Two-Dimensions Having Z3Symmetry, Nucl. Phys.B 280 (1987) 644 [INSPIRE].
P. Bowcock and G.M.T. Watts, Null vectors of the W3algebra, Phys. Lett.B 297 (1992) 282 [hep-th/9209105] [INSPIRE].
M. Gaberdiel, Fusion rules of chiral algebras, Nucl. Phys.B 417 (1994) 130 [hep-th/9309105] [INSPIRE].
V.A. Fateev and A.V. Litvinov, Correlation functions in conformal Toda field theory. I, JHEP11 (2007) 002 [arXiv:0709.3806] [INSPIRE].
M.R. Gaberdiel and R. Gopakumar, String Theory as a Higher Spin Theory, JHEP09 (2016) 085 [arXiv:1512.07237] [INSPIRE].
G.E. Arutyunov and S.A. Frolov, Virasoro amplitude from the SNR24orbifold σ-model, Theor. Math. Phys.114 (1998) 43 [hep-th/9708129] [INSPIRE].
G.E. Arutyunov and S.A. Frolov, Four graviton scattering amplitude from SNR8supersymmetric orbifold σ-model, Nucl. Phys.B 524 (1998) 159 [hep-th/9712061] [INSPIRE].
L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The Conformal Field Theory of Orbifolds, Nucl. Phys.B 282 (1987) 13 [INSPIRE].
A. Jevicki, M. Mihailescu and S. Ramgoolam, Gravity from CFT on SN (X ): Symmetries and interactions, Nucl. Phys.B 577 (2000) 47 [hep-th/9907144] [INSPIRE].
O. Lunin and S.D. Mathur, Correlation functions for MN/SNorbifolds, Commun. Math. Phys.219 (2001) 399 [hep-th/0006196] [INSPIRE].
O. Lunin and S.D. Mathur, Three point functions for MN/SNorbifolds with N = 4 supersymmetry, Commun. Math. Phys.227 (2002) 385 [hep-th/0103169] [INSPIRE].
A. Pakman, L. Rastelli and S.S. Razamat, Diagrams for Symmetric Product Orbifolds, JHEP10 (2009) 034 [arXiv:0905.3448] [INSPIRE].
D. Friedan, Z.-a. Qiu and S.H. Shenker, Superconformal Invariance in Two-Dimensions and the Tricritical Ising Model, Phys. Lett.151B (1985) 37 [INSPIRE].
M.R. Gaberdiel, Fusion of twisted representations, Int. J. Mod. Phys.B 12 (1997) 5183 [hep-th/9607036] [INSPIRE].
T. Dupic, B. Estienne and Y. Ikhlef, Entanglement entropies of minimal models from null-vectors, SciPost Phys.4 (2018) 031 [arXiv:1709.09270] [INSPIRE].
T. Hartman, D. Mazáč and L. Rastelli, Sphere Packing and Quantum Gravity, JHEP12 (2019) 048 [arXiv:1905.01319] [INSPIRE].
K. Roumpedakis, Comments on the SNorbifold CFT in the large N -limit, JHEP07 (2018) 038 [arXiv:1804.03207] [INSPIRE].
L. Bhardwaj and Y. Tachikawa, On finite symmetries and their gauging in two dimensions, JHEP03 (2018) 189 [arXiv:1704.02330] [INSPIRE].
S. Hamidi and C. Vafa, Interactions on Orbifolds, Nucl. Phys.B 279 (1987) 465 [INSPIRE].
R. Dijkgraaf, C. Vafa, E.P. Verlinde and H.L. Verlinde, The Operator Algebra of Orbifold Models, Commun. Math. Phys.123 (1989) 485 [INSPIRE].
B.A. Burrington, I.T. Jardine and A.W. Peet, The OPE of bare twist operators in bosonic SNorbifold CFTs at large N , JHEP08 (2018) 202 [arXiv:1804.01562] [INSPIRE].
R. Cavalieri and E. Miles, London Mathematical Society Student Texts. Vol. 87: Riemann surfaces and algebraic curves, Cambridge University Press, Cambridge U.K. (2016).
F. Liu and B. Osserman, The irreducibility of certain pure-cycle Hurwitz spaces, Am. J. Math.130 (2008) 1687.
S. Ribault, Conformal field theory on the plane, arXiv:1406.4290 [INSPIRE].
T. Eguchi and H. Ooguri, Conformal and Current Algebras on General Riemann Surface, Nucl. Phys.B 282 (1987) 308 [INSPIRE].
T. Eguchi and H. Ooguri, Differential Equations for Conformal Characters in Moduli Space, Phys. Lett.B 203 (1988) 44 [INSPIRE].
S.D. Mathur, S. Mukhi and A. Sen, Differential Equations for Correlators and Characters in Arbitrary Rational Conformal Field Theories, Nucl. Phys.B 312 (1989) 15 [INSPIRE].
M.R. Gaberdiel and C.A. Keller, Modular differential equations and null vectors, JHEP09 (2008) 079 [arXiv:0804.0489] [INSPIRE].
P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, Berlin Germany (1997).
N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP03 (1999) 018 [hep-th/9902098] [INSPIRE].
A. Pakman, L. Rastelli and S.S. Razamat, Extremal Correlators and Hurwitz Numbers in Symmetric Product Orbifolds, Phys. Rev.D 80 (2009) 086009 [arXiv:0905.3451] [INSPIRE].
M. Baggio, J. de Boer and K. Papadodimas, A non-renormalization theorem for chiral primary 3-point functions, JHEP07 (2012) 137 [arXiv:1203.1036] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1911.08485
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Dei, A., Eberhardt, L. Correlators of the symmetric product orbifold. J. High Energ. Phys. 2020, 108 (2020). https://doi.org/10.1007/JHEP01(2020)108
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2020)108