Abstract
High-energy colliders offer a unique sensitivity to dark photons, the mediators of a broken dark U(1) gauge theory that kinetically mixes with the Standard Model (SM) hypercharge. Dark photons can be detected in the exotic decay of the 125 GeV Higgs boson, h→ZZ D →4ℓ, and in Drell-Yan events, pp→Z D → ℓℓ. If the dark U(1) is broken by a hidden-sector Higgs mechanism, then mixing between the dark and SM Higgs bosons also allows the exotic decay h → Z D Z D → 4ℓ. We show that the 14 TeV LHC and a 100 TeV proton-proton collider provide powerful probes of both exotic Higgs decay channels. In the case of kinetic mixing alone, direct Drell-Yan production offers the best sensitivity to Z D , and can probe ϵ ≳ 9 × 10−4 (4 × 10−4) at the HL-LHC (100 TeV pp collider). The exotic Higgs decay h → ZZ D offers slightly weaker sensitivity, but both measurements are necessary to distinguish the kinetically mixed dark photon from other scenarios. If Higgs mixing is also present, then the decay h → Z D Z D can allow sensitivity to the Z D for ϵ ≳ 10−9 − 10−6 (10−10 − 10−7) for the mass range \( 2{m}_{\mu }<{m_Z}_{{}_D}<{m}_h/2 \) by searching for displaced dark photon decays. We also compare the Z D sensitivity at pp colliders to the indirect, but model-independent, sensitivity of global fits to electroweak precision observables. We perform a global electroweak fit of the dark photon model, substantially updating previous work in the literature. Electroweak precision measurements at LEP, Tevatron, and the LHC exclude ϵ as low as 3 × 10−2. Sensitivity can be improved by up to a factor of ∼ 2 with HL-LHC data, and an additional factor of ∼ 4 with ILC/GigaZ data.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Y. Gershtein et al., Working group report: new particles, forces and dimensions, arXiv:1311.0299 [INSPIRE].
Workshop on future high energy circular colliders webpage, http://indico.ihep.ac.cn/conferenceDisplay.py?confId=3813.
Future circular collider study kick-off meeting webpage, https://indico.cern.ch/event/282344/.
N. Zhou, D. Berge, L. Wang, D. Whiteson and T. Tait, Sensitivity of future collider facilities to WIMP pair production via effective operators and light mediators, arXiv:1307.5327 [INSPIRE].
T. Cohen et al., SUSY simplified models at 14, 33 and 100 TeV proton colliders, JHEP 04 (2014) 117 [arXiv:1311.6480] [INSPIRE].
S. Jung and J.D. Wells, Gaugino physics of split supersymmetry spectra at the LHC and future proton colliders, Phys. Rev. D 89 (2014) 075004 [arXiv:1312.1802] [INSPIRE].
T.G. Rizzo, Exploring new gauge bosons at a 100 TeV collider, Phys. Rev. D 89 (2014) 095022 [arXiv:1403.5465] [INSPIRE].
M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].
T. Cohen, R.T. D’Agnolo, M. Hance, H.K. Lou and J.G. Wacker, Boosting stop searches with a 100 TeV proton collider, JHEP 11 (2014) 021 [arXiv:1406.4512] [INSPIRE].
A.J. Larkoski and J. Thaler, Aspects of jets at 100 TeV, Phys. Rev. D 90 (2014) 034010 [arXiv:1406.7011] [INSPIRE].
A. Hook and A. Katz, Unbroken SU(2) at a 100 TeV collider, JHEP 09 (2014) 175 [arXiv:1407.2607] [INSPIRE].
S. Gori, S. Jung, L.-T. Wang and J.D. Wells, Prospects for electroweakino discovery at a 100 TeV hadron collider, JHEP 12 (2014) 108 [arXiv:1410.6287] [INSPIRE].
D. Curtin, P. Meade and C.-T. Yu, Testing electroweak baryogenesis with future colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].
S. Chang, J. Galloway, M. Luty, E. Salvioni and Y. Tsai, Phenomenology of induced electroweak symmetry breaking, arXiv:1411.6023 [INSPIRE].
Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP 02 (2007) 009 [hep-ph/0609152] [INSPIRE].
N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs, JHEP 03 (2014) 140 [arXiv:1312.1341] [INSPIRE].
N. Craig, S. Knapen and P. Longhi, Neutral naturalness from the orbifold Higgs, arXiv:1410.6808 [INSPIRE].
G. Burdman, Z. Chacko, R. Harnik, L. de Lima and C.B. Verhaaren, Colorless top partners, a 125 GeV Higgs and the limits on naturalness, arXiv:1411.3310 [INSPIRE].
V. Silveira and A. Zee, Scalar phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].
M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
D. Feldman, B. Körs and P. Nath, Extra-weakly interacting dark matter, Phys. Rev. D 75 (2007) 023503 [hep-ph/0610133] [INSPIRE].
D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].
M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].
P. Galison and A. Manohar, Two Z’s or not two Z’s?, Phys. Lett. B 136 (1984) 279 [INSPIRE].
K.R. Dienes, C.F. Kolda and J. March-Russell, Kinetic mixing and the supersymmetric gauge hierarchy, Nucl. Phys. B 492 (1997) 104 [hep-ph/9610479] [INSPIRE].
J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].
J.L. Hewett et al., Fundamental physics at the intensity frontier, arXiv:1205.2671 [INSPIRE].
R. Essig et al., Working group report: new light weakly coupled particles, arXiv:1311.0029 [INSPIRE].
J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].
B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].
R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e − colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].
M. Freytsis, G. Ovanesyan and J. Thaler, Dark force detection in low energy e-p collisions, JHEP 01 (2010) 111 [arXiv:0909.2862] [INSPIRE].
R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A ′ decaying to e + e −, JHEP 02 (2011) 009 [arXiv:1001.2557] [INSPIRE].
J. Blümlein and J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett. B 701 (2011) 155 [arXiv:1104.2747] [INSPIRE].
S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].
M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].
M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].
BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar boson in radiative transitions Υ → γA 0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].
A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].
J.D. Bjorken et al., Search for neutral metastable penetrating particles produced in the SLAC beam dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].
E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].
A. Bross et al., A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].
KLOE-2 collaboration, D. Babusci et al., Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector, Phys. Lett. B 720 (2013) 111 [arXiv:1210.3927] [INSPIRE].
F. Archilli et al., Search for a vector gauge boson in phi meson decays with the KLOE detector, Phys. Lett. B 706 (2012) 251 [arXiv:1110.0411] [INSPIRE].
APEX collaboration, S. Abrahamyan et al., Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett. 107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].
A1 collaboration, H. Merkel et al., Search for light gauge bosons of the dark sector at the Mainz microtron, Phys. Rev. Lett. 106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].
J.B. Dent, F. Ferrer and L.M. Krauss, Constraints on light hidden sector gauge bosons from supernova cooling, arXiv:1201.2683 [INSPIRE].
H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark side of Higgs diphoton decays and muon g-2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].
H. Davoudiasl, H.-S. Lee and W.J. Marciano, ‘Dark’ Z implications for parity violation, rare meson decays and Higgs physics, Phys. Rev. D 85 (2012) 115019 [arXiv:1203.2947] [INSPIRE].
H. Davoudiasl, H.-S. Lee, I. Lewis and W.J. Marciano, Higgs decays as a window into the dark sector, Phys. Rev. D 88 (2013) 015022 [arXiv:1304.4935] [INSPIRE].
M. Endo, K. Hamaguchi and G. Mishima, Constraints on hidden photon models from electron g-2 and hydrogen spectroscopy, Phys. Rev. D 86 (2012) 095029 [arXiv:1209.2558] [INSPIRE].
J. Balewski et al., DarkLight: a search for dark forces at the Jefferson laboratory free-electron laser facility, arXiv:1307.4432 [INSPIRE].
WASA-at-COSY collaboration, P. Adlarson et al., Search for a dark photon in the π 0 → e + e −γ decay, Phys. Lett. B 726 (2013) 187 [arXiv:1304.0671] [INSPIRE].
HADES collaboration, G. Agakishiev et al., Searching a dark photon with HADES, Phys. Lett. B 731 (2014) 265 [arXiv:1311.0216] [INSPIRE].
J. Blümlein and J. Brunner, New exclusion limits on dark gauge forces from proton Bremsstrahlung in beam-dump data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].
S. Andreas et al., Proposal for an experiment to search for light dark matter at the SPS, arXiv:1312.3309 [INSPIRE].
M. Battaglieri et al., The heavy photon search test detector, arXiv:1406.6115 [INSPIRE].
H. Merkel et al., Search at the Mainz microtron for light massive gauge bosons relevant for the muon g-2 anomaly, Phys. Rev. Lett. 112 (2014) 221802 [arXiv:1404.5502] [INSPIRE].
BaBar collaboration, J.P. Lees et al., Search for a dark photon in e + e − collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
PHENIX collaboration, A. Adare et al., Search for dark photons from neutral meson decays in p+p and d+Au collisions at \( \sqrt{s_{\mathrm{NN}}}=200 \) GeV, arXiv:1409.0851 [INSPIRE].
D. Kazanas, R.N. Mohapatra, S. Nussinov, V.L. Teplitz and Y. Zhang, Supernova bounds on the dark photon using its electromagnetic decay, Nucl. Phys. B 890 (2015) 17 [arXiv:1410.0221] [INSPIRE].
B. Echenard, R. Essig and Y.-M. Zhong, Projections for dark photon searches at Mu3e, JHEP 01 (2015) 113 [arXiv:1411.1770] [INSPIRE].
D. Gorbunov, A. Makarov and I. Timiryasov, Decaying light particles on board the SHiP (I): signal rate estimates for hidden photons, arXiv:1411.4007 [INSPIRE].
E. Goudzovski, Search for the dark photon in π 0 decays by NA48/2 at CERN, in MesonNet workshop, LNF, Frascati Italy September 2014.
D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].
S. Gopalakrishna, S. Jung and J.D. Wells, Higgs boson decays to four fermions through an Abelian hidden sector, Phys. Rev. D 78 (2008) 055002 [arXiv:0801.3456] [INSPIRE].
C.-F. Chang, E. Ma and T.-C. Yuan, Multilepton Higgs decays through the dark portal, JHEP 03 (2014) 054 [arXiv:1308.6071] [INSPIRE].
A. Falkowski and R. Vega-Morales, Exotic Higgs decays in the golden channel, JHEP 12 (2014) 037 [arXiv:1405.1095] [INSPIRE].
J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z ′ -mediated dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].
I. Hoenig, G. Samach and D. Tucker-Smith, Searching for dilepton resonances below the Z mass at the LHC, Phys. Rev. D 90 (2014) 075016 [arXiv:1408.1075] [INSPIRE].
Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g-2 and to α(M 2 Z ), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].
M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].
D.P. Finkbeiner and N. Weiner, Exciting dark matter and the INTEGRAL/SPI 511 keV signal, Phys. Rev. D 76 (2007) 083519 [astro-ph/0702587] [INSPIRE].
P. Fayet, Light spin 1/2 or spin 0 dark matter particles, Phys. Rev. D 70 (2004) 023514 [hep-ph/0403226] [INSPIRE].
N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].
C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].
M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-Abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [INSPIRE].
D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [INSPIRE].
D0 collaboration, V.M. Abazov et al., Search for NMSSM Higgs bosons in the h → aa → μμμμ, μμττ channels using \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 103 (2009) 061801 [arXiv:0905.3381] [INSPIRE].
CMS collaboration, Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states, Phys. Lett. B 726 (2013) 564 [arXiv:1210.7619] [INSPIRE].
CMS collaboration, Search for light resonances decaying into pairs of muons as a signal of new physics, JHEP 07 (2011) 098 [arXiv:1106.2375] [INSPIRE].
CMS collaboration, Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states, CMS-PAS-HIG-13-010, CERN, Geneva Switzerland (2013).
R. Essig, J. Kaplan, P. Schuster and N. Toro, On the origin of light dark matter species, submitted to Phys. Rev. D (2010) [arXiv:1004.0691] [INSPIRE].
S.A. Abel, M.D. Goodsell, J. Jaeckel, V.V. Khoze and A. Ringwald, Kinetic mixing of the photon with hidden U(1)s in string phenomenology, JHEP 07 (2008) 124 [arXiv:0803.1449] [INSPIRE].
M. Goodsell, S. Ramos-Sanchez and A. Ringwald, Kinetic mixing of U(1)s in heterotic orbifolds, JHEP 01 (2012) 021 [arXiv:1110.6901] [INSPIRE].
M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].
R. Schabinger and J.D. Wells, A minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the Large Hadron Collider, Phys. Rev. D 72 (2005) 093007 [hep-ph/0509209] [INSPIRE].
M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [INSPIRE].
A. Martin and T.S. Roy, The gold-plated channel for supersymmetric Higgs via Higgsphilic Z′, arXiv:1103.3504 [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
M.J. Strassler, Possible effects of a hidden valley on supersymmetric phenomenology, hep-ph/0607160 [INSPIRE].
A. Falkowski, J.T. Ruderman, T. Volansky and J. Zupan, Hidden Higgs decaying to lepton jets, JHEP 05 (2010) 077 [arXiv:1002.2952] [INSPIRE].
Y.F. Chan, M. Low, D.E. Morrissey and A.P. Spray, LHC signatures of a minimal supersymmetric hidden valley, JHEP 05 (2012) 155 [arXiv:1112.2705] [INSPIRE].
E. Gabrielli, M. Heikinheimo, B. Mele and M. Raidal, Dark photons and resonant monophoton signatures in Higgs boson decays at the LHC, Phys. Rev. D 90 (2014) 055032 [arXiv:1405.5196] [INSPIRE].
Particle Data Group collaboration, K. Olive et al., Review of particle physics (RPP), Chin. Phys. C 38 (2014) 090001 [INSPIRE].
K.G. Chetyrkin, R.V. Harlander and J.H. Kuhn, Quartic mass corrections to R had at order α 3 s , Nucl. Phys. B 586 (2000) 56 [Erratum ibid. B 634 (2002) 413] [hep-ph/0005139] [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and A. Kwiatkowski, QCD corrections to the e + e − cross-section and the Z boson decay rate: concepts and results, Phys. Rept. 277 (1996) 189 [INSPIRE].
K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [hep-ph/0004189] [INSPIRE].
Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].
B. Batell, S. Gori and L.-T. Wang, Higgs couplings and precision electroweak data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].
M. Baak et al., Working group report: precision study of electroweak interactions, arXiv:1310.6708 [INSPIRE].
J.D. Wells and Z. Zhang, Precision electroweak analysis after the Higgs boson discovery, Phys. Rev. D 90 (2014) 033006 [arXiv:1406.6070] [INSPIRE].
H. Flacher et al., Revisiting the global electroweak fit of the standard model and beyond with Gfitter, Eur. Phys. J. C 60 (2009) 543 [Erratum ibid. C 71 (2011) 1718] [arXiv:0811.0009] [INSPIRE].
A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, arXiv:1411.0669 [INSPIRE].
M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev. D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].
G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g-2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].
M. Awramik, M. Czakon and A. Freitas, Electroweak two-loop corrections to the effective weak mixing angle, JHEP 11 (2006) 048 [hep-ph/0608099] [INSPIRE].
A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to \( si{n}^2{\theta}_{\mathrm{eff}}^{b\overline{b}} \) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [Erratum ibid. 05 (2013) 074] [Erratum ibid. 10 (2013) 044] [arXiv:1205.0299] [INSPIRE].
A. Freitas, Higher-order electroweak corrections to the partial widths and branching ratios of the Z boson, JHEP 04 (2014) 070 [arXiv:1401.2447] [INSPIRE].
ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
S. Moch et al., High precision fundamental constants at the TeV scale, arXiv:1405.4781 [INSPIRE].
CMS collaboration, Projected improvement of the accuracy of top-quark mass measurements at the upgraded LHC, CMS-PAS-FTR-13-017, CERN, Geneva Switzerland (2013).
S. Dawson et al., Working group report: Higgs boson, arXiv:1310.8361 [INSPIRE].
J. Fan, M. Reece and L.-T. Wang, Possible futures of electroweak precision: ILC, FCC-ee and CEPC, arXiv:1411.1054 [INSPIRE].
H. Baer et al., The International Linear Collider technical design report — volume 2: physics, arXiv:1306.6352 [INSPIRE].
CMS collaboration, Properties of the Higgs-like boson in the decay H → ZZ → 4ℓ in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002, CERN, Geneva Switzerland (2013).
ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-013, CERN, Geneva Switzerland (2013).
CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-013, CERN, Geneva Switzerland (2013).
CMS collaboration, Electron performance with 19.6 fb−1 of data collected at \( \sqrt{s}=8 \) TeV with the CMS detector, CMS-DP-2013-003, CERN, Geneva Switzerland (2013).
CMS collaboration, CMS tracking performance results from early LHC operation, Eur. Phys. J. C 70 (2010) 1165 [arXiv:1007.1988] [INSPIRE].
J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
Higgs cross sections for HL-LHC and HE-LHC webpage, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HiggsEuropeanStrategy, (2014).
LHC Higgs Cross section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].
D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064 [arXiv:1109.2109] [INSPIRE].
J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].
ATLAS collaboration, Projections for measurements of Higgs boson cross sections, branching ratios and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2013-014, CERN, Geneva Switzerland (2013).
CMS collaboration, Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2013) 030 [arXiv:1310.7291] [INSPIRE].
ATLAS collaboration, Search for high-mass dilepton resonances in 20 fb−1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS experiment, ATLAS-CONF-2013-017, CERN, Geneva Switzerland (2013).
J. Jaeckel, M. Jankowiak and M. Spannowsky, LHC probes the hidden sector, Phys. Dark Univ. 2 (2013) 111 [arXiv:1212.3620] [INSPIRE].
ATLAS collaboration, Measurement of the total ZZ production cross section in proton-proton collisions at \( \sqrt{s}=8 \) TeV in 20 fb−1 with the ATLAS detector, ATLAS-CONF-2013-020, CERN, Geneva Switzerland (2013).
J.D. Clarke, R. Foot and R.R. Volkas, Phenomenology of a very light scalar (100 MeV < m h < 10 GeV) mixing with the SM Higgs, JHEP 02 (2014) 123 [arXiv:1310.8042] [INSPIRE].
ATLAS collaboration, Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 088 [arXiv:1409.0746] [INSPIRE].
ATLAS collaboration, Search for invisible decays of a Higgs boson produced in association with a Z boson in ATLAS, ATLAS-CONF-2013-011, CERN, Geneva Switzerland (2013).
CMS collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes, Eur. Phys. J. C 74 (2014) 2980 [arXiv:1404.1344] [INSPIRE].
M.E. Peskin, Estimation of LHC and ILC capabilities for precision Higgs boson coupling measurements, arXiv:1312.4974 [INSPIRE].
CMS collaboration, H → ZZ → 4ℓ, CMS-PAS-FTR-13-003, CERN, Geneva Switzerland (2013).
G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like boson via \( h\to V\mathrm{\mathcal{F}} \) decays, Phys. Lett. B 728 (2014) 131 [arXiv:1305.0663] [INSPIRE].
A.L. Kagan et al., An exclusive window onto Higgs Yukawa couplings, arXiv:1406.1722 [INSPIRE].
M. Gonzalez-Alonso and G. Isidori, The h → 4ℓ spectrum at low m 34 : standard model vs. light new physics, Phys. Lett. B 733 (2014) 359 [arXiv:1403.2648] [INSPIRE].
D.Y. Bardin et al., ZFITTER v.6.21: a semianalytical program for fermion pair production in e + e − annihilation, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433] [INSPIRE].
ATLAS, CDF, CMS and D0 collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
CMS collaboration, Measurement of the top-quark mass in \( t\overline{t} \) events with lepton+jets final states in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-TOP-14-001, CERN, Geneva Switzerland (2014).
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1412.0018
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Curtin, D., Essig, R., Gori, S. et al. Illuminating dark photons with high-energy colliders. J. High Energ. Phys. 2015, 157 (2015). https://doi.org/10.1007/JHEP02(2015)157
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2015)157