Abstract
We present the conservative effective two-body Hamiltonian at the third order in the post-Newtonian expansion with gravitoelectric quadrupolar dynamical tidal-interactions. Our derivation of the effective two-body Lagrangian is based on the diagrammatic effective field theory approach and it involves Feynman integrals up to three loops, which are evaluated within the dimensional regularization scheme. The elimination of the divergent terms occurring in the effective Lagrangian requires the addition of counterterms to ensure finite observables, thereby introducing a renormalization group flow to the post-adiabatic Love number. As a limiting case of the renormalized dynamical effective Hamiltonian, we also derive the effective Hamiltonian for adiabatic tides, and, in this regime, calculate the binding energy for a circular orbit, and the scattering angle in a hyperbolic scattering.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
KAGRA et al. collaborations, GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run, Phys. Rev. X 13 (2023) 041039 [arXiv:2111.03606] [INSPIRE].
LIGO Scientific collaboration, Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001 [arXiv:1411.4547] [INSPIRE].
VIRGO collaboration, Advanced Virgo: a second-generation interferometric gravitational wave detector, Class. Quant. Grav. 32 (2015) 024001 [arXiv:1408.3978] [INSPIRE].
KAGRA collaboration, Overview of KAGRA: calibration, detector characterization, physical environmental monitors, and the geophysics interferometer, PTEP 2021 (2021) 05A102 [arXiv:2009.09305] [INSPIRE].
M. Saleem et al., The science case for LIGO-India, Class. Quant. Grav. 39 (2022) 025004 [arXiv:2105.01716] [INSPIRE].
LIGO Scientific collaboration, Exploring the sensitivity of next generation gravitational wave detectors, Class. Quant. Grav. 34 (2017) 044001 [arXiv:1607.08697] [INSPIRE].
M. Punturo et al., The third generation of gravitational wave observatories and their science reach, Class. Quant. Grav. 27 (2010) 084007 [INSPIRE].
LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].
LIGO Scientific and Virgo collaborations, GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119 (2017) 161101 [arXiv:1710.05832] [INSPIRE].
LIGO Scientific et al. collaborations, Multi-messenger observations of a binary neutron star merger, Astrophys. J. Lett. 848 (2017) L12 [arXiv:1710.05833] [INSPIRE].
LIGO Scientific and Virgo collaborations, GW190425: observation of a compact binary coalescence with total mass ~3.4M⊙, Astrophys. J. Lett. 892 (2020) L3 [arXiv:2001.01761] [INSPIRE].
E.E. Flanagan and T. Hinderer, Constraining neutron star tidal Love numbers with gravitational wave detectors, Phys. Rev. D 77 (2008) 021502 [arXiv:0709.1915] [INSPIRE].
LIGO Scientific and Virgo collaborations, Properties of the binary neutron star merger GW170817, Phys. Rev. X 9 (2019) 011001 [arXiv:1805.11579] [INSPIRE].
LIGO Scientific and Virgo collaborations, GW170817: measurements of neutron star radii and equation of state, Phys. Rev. Lett. 121 (2018) 161101 [arXiv:1805.11581] [INSPIRE].
K. Chatziioannou, Neutron star tidal deformability and equation of state constraints, Gen. Rel. Grav. 52 (2020) 109 [arXiv:2006.03168] [INSPIRE].
B.K. Pradhan, A. Vijaykumar and D. Chatterjee, Impact of updated multipole Love numbers and f-Love universal relations in the context of binary neutron stars, Phys. Rev. D 107 (2023) 023010 [arXiv:2210.09425] [INSPIRE].
P.N. McDermott, H.M. van Horn and J.F. Scholl, Nonradial g-mode oscillations of warm neutron stars, Astrophys. J. 268 (1983) 837.
P.N. McDermott, H.M. van Horn and C.J. Hansen, Nonradial oscillations of neutron stars, Astrophys. J. 325 (1988) 725.
J. Christensen-Dalsgaard, Lecture notes on stellar oscillations, https://users-phys.au.dk/jcd/oscilnotes/, Institut for Fysik og Astronomi, Aarhus Universitet, Aarhus, Denmark (1998).
K.D. Kokkotas and B.G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel. 2 (1999) 2 [gr-qc/9909058] [INSPIRE].
N. Andersson, A gravitational-wave perspective on neutron-star seismology, Universe 7 (2021) 97 [arXiv:2103.10223] [INSPIRE].
C.M. Will, Tidal gravitational radiation from homogeneous stars, Astrophys. J. 274 (1983) 858 [INSPIRE].
G. Pratten, P. Schmidt and N. Williams, Impact of dynamical tides on the reconstruction of the neutron star equation of state, Phys. Rev. Lett. 129 (2022) 081102 [arXiv:2109.07566] [INSPIRE].
J. Steinhoff, T. Hinderer, A. Buonanno and A. Taracchini, Dynamical tides in general relativity: effective action and effective-one-body Hamiltonian, Phys. Rev. D 94 (2016) 104028 [arXiv:1608.01907] [INSPIRE].
T. Hinderer et al., Effects of neutron-star dynamic tides on gravitational waveforms within the effective-one-body approach, Phys. Rev. Lett. 116 (2016) 181101 [arXiv:1602.00599] [INSPIRE].
N. Andersson and P. Pnigouras, The phenomenology of dynamical neutron star tides, Mon. Not. Roy. Astron. Soc. 503 (2021) 533 [arXiv:1905.00012] [INSPIRE].
P. Schmidt and T. Hinderer, Frequency domain model of f-mode dynamic tides in gravitational waveforms from compact binary inspirals, Phys. Rev. D 100 (2019) 021501 [arXiv:1905.00818] [INSPIRE].
S. Akcay et al., Effective-one-body multipolar waveform for tidally interacting binary neutron stars up to merger, Phys. Rev. D 99 (2019) 044051 [arXiv:1812.02744] [INSPIRE].
T. Dietrich et al., Improving the NRTidal model for binary neutron star systems, Phys. Rev. D 100 (2019) 044003 [arXiv:1905.06011] [INSPIRE].
R. Gamba and S. Bernuzzi, Resonant tides in binary neutron star mergers: analytical-numerical relativity study, Phys. Rev. D 107 (2023) 044014 [arXiv:2207.13106] [INSPIRE].
R. Gamba et al., Analytically improved and numerical-relativity informed effective-one-body model for coalescing binary neutron stars, arXiv:2307.15125 [INSPIRE].
D. Reitze et al., Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 035 [arXiv:1907.04833] [INSPIRE].
K. Ackley et al., Neutron star extreme matter observatory: a kilohertz-band gravitational-wave detector in the global network, Publ. Astron. Soc. Austral. 37 (2020) e047 [arXiv:2007.03128] [INSPIRE].
J.C. Collins and C. Gale, Renormalization: an introduction to renormalization, the renormalization group and the operator-product expansion, Cambridge University Press, Cambridge, U.K. (1986) [https://doi.org/10.1017/9781009401807].
T. Hinderer, Tidal Love numbers of neutron stars, Astrophys. J. 677 (2008) 1216 [Erratum ibid. 697 (2009) 964] [arXiv:0711.2420] [INSPIRE].
T. Binnington and E. Poisson, Relativistic theory of tidal Love numbers, Phys. Rev. D 80 (2009) 084018 [arXiv:0906.1366] [INSPIRE].
T. Damour and A. Nagar, Relativistic tidal properties of neutron stars, Phys. Rev. D 80 (2009) 084035 [arXiv:0906.0096] [INSPIRE].
S. Chakrabarti, T. Delsate and J. Steinhoff, Effective action and linear response of compact objects in Newtonian gravity, Phys. Rev. D 88 (2013) 084038 [arXiv:1306.5820] [INSPIRE].
D. Bini, T. Damour and G. Faye, Effective action approach to higher-order relativistic tidal interactions in binary systems and their effective one body description, Phys. Rev. D 85 (2012) 124034 [arXiv:1202.3565] [INSPIRE].
K.S. Thorne and J.B. Hartle, Laws of motion and precession for black holes and other bodies, Phys. Rev. D 31 (1984) 1815 [INSPIRE].
X.H. Zhang, Multipole expansions of the general-relativistic gravitational field of the external universe, Phys. Rev. D 34 (1986) 991 [INSPIRE].
T. Damour, M. Soffel and C.-M. Xu, General relativistic celestial mechanics. 1. Method and definition of reference systems, Phys. Rev. D 43 (1991) 3273 [INSPIRE].
T. Damour and A. Nagar, Effective one body description of tidal effects in inspiralling compact binaries, Phys. Rev. D 81 (2010) 084016 [arXiv:0911.5041] [INSPIRE].
Q. Henry, G. Faye and L. Blanchet, Tidal effects in the equations of motion of compact binary systems to next-to-next-to-leading post-Newtonian order, Phys. Rev. D 101 (2020) 064047 [arXiv:1912.01920] [INSPIRE].
M. Favata, Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse, Phys. Rev. D 73 (2006) 104005 [astro-ph/0510668] [INSPIRE].
P. Landry and E. Poisson, Gravitomagnetic response of an irrotational body to an applied tidal field, Phys. Rev. D 91 (2015) 104026 [arXiv:1504.06606] [INSPIRE].
P. Pani, L. Gualtieri, T. Abdelsalhin and X. Jiménez-Forteza, Magnetic tidal Love numbers clarified, Phys. Rev. D 98 (2018) 124023 [arXiv:1810.01094] [INSPIRE].
B. Banihashemi and J. Vines, Gravitomagnetic tidal effects in gravitational waves from neutron star binaries, Phys. Rev. D 101 (2020) 064003 [arXiv:1805.07266] [INSPIRE].
E. Poisson, Gravitomagnetic tidal resonance in neutron-star binary inspirals, Phys. Rev. D 101 (2020) 104028 [arXiv:2003.10427] [INSPIRE].
E. Poisson, Gravitomagnetic Love tensor of a slowly rotating body: post-Newtonian theory, Phys. Rev. D 102 (2020) 064059 [arXiv:2007.01678] [INSPIRE].
E. Poisson and C. Buisson, Tidal driving of inertial modes of Maclaurin spheroids, Phys. Rev. D 102 (2020) 104005 [arXiv:2007.03050] [INSPIRE].
P.K. Gupta, J. Steinhoff and T. Hinderer, Relativistic effective action of dynamical gravitomagnetic tides for slowly rotating neutron stars, Phys. Rev. Res. 3 (2021) 013147 [arXiv:2011.03508] [INSPIRE].
W.D. Goldberger and I.Z. Rothstein, An effective field theory of gravity for extended objects, Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].
L. Blanchet, Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Rel. 17 (2014) 2 [arXiv:1310.1528] [INSPIRE].
B. Kol and R. Shir, Classical 3-loop 2-body diagrams, JHEP 09 (2013) 069 [arXiv:1306.3220] [INSPIRE].
S. Foffa, P. Mastrolia, R. Sturani and C. Sturm, Effective field theory approach to the gravitational two-body dynamics, at fourth post-Newtonian order and quintic in the Newton constant, Phys. Rev. D 95 (2017) 104009 [arXiv:1612.00482] [INSPIRE].
R.A. Porto, The effective field theorist’s approach to gravitational dynamics, Phys. Rept. 633 (2016) 1 [arXiv:1601.04914] [INSPIRE].
M. Levi, Effective field theories of post-Newtonian gravity: a comprehensive review, Rept. Prog. Phys. 83 (2020) 075901 [arXiv:1807.01699] [INSPIRE].
W.D. Goldberger, Effective field theories of gravity and compact binary dynamics: a Snowmass 2021 whitepaper, in the proceedings of the Snowmass 2021, (2022) [arXiv:2206.14249] [INSPIRE].
M.K. Mandal, P. Mastrolia, R. Patil and J. Steinhoff, Gravitational spin-orbit Hamiltonian at NNNLO in the post-Newtonian framework, JHEP 03 (2023) 130 [arXiv:2209.00611] [INSPIRE].
M.K. Mandal, P. Mastrolia, R. Patil and J. Steinhoff, Gravitational quadratic-in-spin Hamiltonian at NNNLO in the post-Newtonian framework, JHEP 07 (2023) 128 [arXiv:2210.09176] [INSPIRE].
M.K. Mandal et al., Gravitoelectric dynamical tides at second post-Newtonian order, JHEP 11 (2023) 067 [arXiv:2304.02030] [INSPIRE].
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].
J.M.M. García, xAct: efficient tensor computer algebra for Mathematica, http://www.xact.es/.
R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
J.E. Vines and E.E. Flanagan, Post-1-Newtonian quadrupole tidal interactions in binary systems, Phys. Rev. D 88 (2013) 024046 [arXiv:1009.4919] [INSPIRE].
J. Steinhoff, T. Hinderer, T. Dietrich and F. Foucart, Spin effects on neutron star fundamental-mode dynamical tides: phenomenology and comparison to numerical simulations, Phys. Rev. Res. 3 (2021) 033129 [arXiv:2103.06100] [INSPIRE].
P.K. Gupta, J. Steinhoff and T. Hinderer, Effect of dynamical gravitomagnetic tides on measurability of tidal parameters for binary neutron stars using gravitational waves, Phys. Rev. D 108 (2023) 124040 [arXiv:2302.11274] [INSPIRE].
J. Vines, E.E. Flanagan and T. Hinderer, Post-1-Newtonian tidal effects in the gravitational waveform from binary inspirals, Phys. Rev. D 83 (2011) 084051 [arXiv:1101.1673] [INSPIRE].
T. Abdelsalhin, L. Gualtieri and P. Pani, Post-Newtonian spin-tidal couplings for compact binaries, Phys. Rev. D 98 (2018) 104046 [arXiv:1805.01487] [INSPIRE].
P. Landry, Rotational-tidal phasing of the binary neutron star waveform, arXiv:1805.01882 [INSPIRE].
G.U. Jakobsen, G. Mogull, J. Plefka and B. Sauer, All things retarded: radiation-reaction in worldline quantum field theory, JHEP 10 (2022) 128 [arXiv:2207.00569] [INSPIRE].
G. Kälin, Z. Liu and R.A. Porto, Conservative tidal effects in compact binary systems to next-to-leading post-Minkowskian order, Phys. Rev. D 102 (2020) 124025 [arXiv:2008.06047] [INSPIRE].
G. Kälin and R.A. Porto, Post-Minkowskian effective field theory for conservative binary dynamics, JHEP 11 (2020) 106 [arXiv:2006.01184] [INSPIRE].
D. Bini, T. Damour and A. Geralico, Scattering of tidally interacting bodies in post-Minkowskian gravity, Phys. Rev. D 101 (2020) 044039 [arXiv:2001.00352] [INSPIRE].
C. Cheung and M.P. Solon, Tidal effects in the post-Minkowskian expansion, Phys. Rev. Lett. 125 (2020) 191601 [arXiv:2006.06665] [INSPIRE].
K. Haddad and A. Helset, Tidal effects in quantum field theory, JHEP 12 (2020) 024 [arXiv:2008.04920] [INSPIRE].
C. Cheung, N. Shah and M.P. Solon, Mining the geodesic equation for scattering data, Phys. Rev. D 103 (2021) 024030 [arXiv:2010.08568] [INSPIRE].
Z. Bern et al., Leading nonlinear tidal effects and scattering amplitudes, JHEP 05 (2021) 188 [arXiv:2010.08559] [INSPIRE].
S. Mougiakakos, M.M. Riva and F. Vernizzi, Gravitational Bremsstrahlung with tidal effects in the post-Minkowskian expansion, Phys. Rev. Lett. 129 (2022) 121101 [arXiv:2204.06556] [INSPIRE].
A. Buonanno and T. Damour, Effective one-body approach to general relativistic two-body dynamics, Phys. Rev. D 59 (1999) 084006 [gr-qc/9811091] [INSPIRE].
A. Buonanno and T. Damour, Transition from inspiral to plunge in binary black hole coalescences, Phys. Rev. D 62 (2000) 064015 [gr-qc/0001013] [INSPIRE].
L. Baiotti et al., Accurate numerical simulations of inspiralling binary neutron stars and their comparison with effective-one-body analytical models, Phys. Rev. D 84 (2011) 024017 [arXiv:1103.3874] [INSPIRE].
S. Bernuzzi, A. Nagar, M. Thierfelder and B. Brugmann, Tidal effects in binary neutron star coalescence, Phys. Rev. D 86 (2012) 044030 [arXiv:1205.3403] [INSPIRE].
D. Bini and T. Damour, Gravitational self-force corrections to two-body tidal interactions and the effective one-body formalism, Phys. Rev. D 90 (2014) 124037 [arXiv:1409.6933] [INSPIRE].
K.G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and the Kadanoff scaling picture, Phys. Rev. B 4 (1971) 3174 [INSPIRE].
L.P. Kadanoff, Scaling laws for Ising models near Tc, Physics Physique Fizika 2 (1966) 263 [INSPIRE].
S.N. Solodukhin, Exact solution for a quantum field with delta-like interaction, Nucl. Phys. B 541 (1999) 461 [hep-th/9801054] [INSPIRE].
W.D. Goldberger and M.B. Wise, Renormalization group flows for brane couplings, Phys. Rev. D 65 (2002) 025011 [hep-th/0104170] [INSPIRE].
S. Foffa, R.A. Porto, I. Rothstein and R. Sturani, Conservative dynamics of binary systems to fourth Post-Newtonian order in the EFT approach II: renormalized Lagrangian, Phys. Rev. D 100 (2019) 024048 [arXiv:1903.05118] [INSPIRE].
J. Blümlein, A. Maier, P. Marquard and G. Schäfer, Fourth post-Newtonian Hamiltonian dynamics of two-body systems from an effective field theory approach, Nucl. Phys. B 955 (2020) 115041 [arXiv:2003.01692] [INSPIRE].
L. Blanchet, Gravitational wave tails of tails, Class. Quant. Grav. 15 (1998) 113 [Erratum ibid. 22 (2005) 3381] [gr-qc/9710038] [INSPIRE].
W.D. Goldberger and A. Ross, Gravitational radiative corrections from effective field theory, Phys. Rev. D 81 (2010) 124015 [arXiv:0912.4254] [INSPIRE].
L. Barack et al., Comparison of post-Minkowskian and self-force expansions: scattering in a scalar charge toy model, Phys. Rev. D 108 (2023) 024025 [arXiv:2304.09200] [INSPIRE].
M.V.S. Saketh, Z. Zhou and M.M. Ivanov, Dynamical tidal response of Kerr black holes from scattering amplitudes, arXiv:2307.10391 [INSPIRE].
B. Kol and M. Smolkin, Non-relativistic gravitation: from Newton to Einstein and back, Class. Quant. Grav. 25 (2008) 145011 [arXiv:0712.4116] [INSPIRE].
B. Kol and M. Smolkin, Classical effective field theory and caged black holes, Phys. Rev. D 77 (2008) 064033 [arXiv:0712.2822] [INSPIRE].
M. Levi and J. Steinhoff, EFTofPNG: a package for high precision computation with the effective field theory of post-Newtonian gravity, Class. Quant. Grav. 34 (2017) 244001 [arXiv:1705.06309] [INSPIRE].
M. Levi and J. Steinhoff, Equivalence of ADM Hamiltonian and effective field theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals, JCAP 12 (2014) 003 [arXiv:1408.5762] [INSPIRE].
G. Schafer, Acceleration-dependent Lagrangians in general relativity, Phys. Lett. A 100 (1984) 128 [INSPIRE].
T. Damour and G. Schaefer, Redefinition of position variables and the reduction of higher order Lagrangians, J. Math. Phys. 32 (1991) 127 [INSPIRE].
T. Damour and G. Schäfer, Lagrangians for n point masses at the second post-Newtonian approximation of general relativity, Gen. Rel. Grav. 17 (1985) 879 [INSPIRE].
B.M. Barker and R.F. O’Connell, Acceleration-dependent Lagrangians and equations of motion, Phys. Lett. A 78 (1980) 231 [INSPIRE].
L. Blanchet, T. Damour and G. Esposito-Farese, Dimensional regularization of the third post-Newtonian dynamics of point particles in harmonic coordinates, Phys. Rev. D 69 (2004) 124007 [gr-qc/0311052] [INSPIRE].
S. Foffa and R. Sturani, Effective field theory calculation of conservative binary dynamics at third post-Newtonian order, Phys. Rev. D 84 (2011) 044031 [arXiv:1104.1122] [INSPIRE].
T. Damour, P. Jaranowski and G. Schaefer, Poincare invariance in the ADM Hamiltonian approach to the general relativistic two-body problem, Phys. Rev. D 62 (2000) 021501 [Erratum ibid. 63 (2001) 029903] [gr-qc/0003051] [INSPIRE].
M. Levi and J. Steinhoff, Complete conservative dynamics for inspiralling compact binaries with spins at the fourth post-Newtonian order, JCAP 09 (2021) 029 [arXiv:1607.04252] [INSPIRE].
D. Bini and T. Damour, Gravitational scattering of two black holes at the fourth post-Newtonian approximation, Phys. Rev. D 96 (2017) 064021 [arXiv:1706.06877] [INSPIRE].
G. Mogull, J. Plefka and J. Steinhoff, Classical black hole scattering from a worldline quantum field theory, JHEP 02 (2021) 048 [arXiv:2010.02865] [INSPIRE].
B. Kol and M. Smolkin, Black hole stereotyping: induced gravito-static polarization, JHEP 02 (2012) 010 [arXiv:1110.3764] [INSPIRE].
H.S. Chia, Tidal deformation and dissipation of rotating black holes, Phys. Rev. D 104 (2021) 024013 [arXiv:2010.07300] [INSPIRE].
L. Hui et al., Static response and Love numbers of Schwarzschild black holes, JCAP 04 (2021) 052 [arXiv:2010.00593] [INSPIRE].
P. Charalambous, S. Dubovsky and M.M. Ivanov, On the vanishing of Love numbers for Kerr black holes, JHEP 05 (2021) 038 [arXiv:2102.08917] [INSPIRE].
L. Hui et al., Ladder symmetries of black holes. Implications for Love numbers and no-hair theorems, JCAP 01 (2022) 032 [arXiv:2105.01069] [INSPIRE].
M.M. Ivanov and Z. Zhou, Vanishing of black hole tidal Love numbers from scattering amplitudes, Phys. Rev. Lett. 130 (2023) 091403 [arXiv:2209.14324] [INSPIRE].
M.M. Ivanov and Z. Zhou, Revisiting the matching of black hole tidal responses: a systematic study of relativistic and logarithmic corrections, Phys. Rev. D 107 (2023) 084030 [arXiv:2208.08459] [INSPIRE].
T. Damour, Gravitational radiation and the motion of compact bodies, in the proceedings of the Les Houches summer school on gravitational radiation, (1982) [INSPIRE].
N. Deruelle and T. Piran, Gravitational radiation, North-Holland, The Netherlands (1983).
S. Chakrabarti, T. Delsate and J. Steinhoff, New perspectives on neutron star and black hole spectroscopy and dynamic tides, arXiv:1304.2228 [INSPIRE].
V. Cardoso et al., Testing strong-field gravity with tidal Love numbers, Phys. Rev. D 95 (2017) 084014 [Addendum ibid. 95 (2017) 089901] [arXiv:1701.01116] [INSPIRE].
R. Brustein and Y. Sherf, Quantum Love numbers, Phys. Rev. D 105 (2022) 024043 [arXiv:2008.02738] [INSPIRE].
G. Raposo et al., Anisotropic stars as ultracompact objects in general relativity, Phys. Rev. D 99 (2019) 104072 [arXiv:1811.07917] [INSPIRE].
S. Nair, S. Chakraborty and S. Sarkar, Dynamical Love numbers for area quantized black holes, Phys. Rev. D 107 (2023) 124041 [arXiv:2208.06235] [INSPIRE].
V. De Luca, J. Khoury and S.S.C. Wong, Nonlinearities in the tidal Love numbers of black holes, Phys. Rev. D 108 (2023) 024048 [arXiv:2305.14444] [INSPIRE].
M.J. Dugan and B. Grinstein, On the vanishing of evanescent operators, Phys. Lett. B 256 (1991) 239 [INSPIRE].
A.J. Buras and P.H. Weisz, QCD nonleading corrections to weak decays in dimensional regularization and ’t Hooft-Veltman schemes, Nucl. Phys. B 333 (1990) 66 [INSPIRE].
S. Herrlich and U. Nierste, Evanescent operators, scheme dependences and double insertions, Nucl. Phys. B 455 (1995) 39 [hep-ph/9412375] [INSPIRE].
W.C.G. Ho and D. Lai, Resonant tidal excitations of rotating neutron stars in coalescing binaries, Mon. Not. Roy. Astron. Soc. 308 (1999) 153 [astro-ph/9812116] [INSPIRE].
S. Ma, H. Yu and Y. Chen, Excitation of f-modes during mergers of spinning binary neutron star, Phys. Rev. D 101 (2020) 123020 [arXiv:2003.02373] [INSPIRE].
R.P. Bhatt, S. Chakraborty and S. Bose, Addressing issues in defining the Love numbers for black holes, Phys. Rev. D 108 (2023) 084013 [arXiv:2306.13627] [INSPIRE].
N.N. Weinberg, P. Arras, E. Quataert and J. Burkart, Nonlinear tides in close binary systems, Astrophys. J. 751 (2012) 136 [arXiv:1107.0946] [INSPIRE].
N.N. Weinberg, P. Arras and J. Burkart, An instability due to the nonlinear coupling of p-modes to g-modes: implications for coalescing neutron star binaries, Astrophys. J. 769 (2013) 121 [arXiv:1302.2292] [INSPIRE].
P. Landry and E. Poisson, Dynamical response to a stationary tidal field, Phys. Rev. D 92 (2015) 124041 [arXiv:1510.09170] [INSPIRE].
W. Xu and D. Lai, Resonant tidal excitation of oscillation modes in merging binary neutron stars: inertial-gravity modes, Phys. Rev. D 96 (2017) 083005 [arXiv:1708.01839] [INSPIRE].
R. Essick, S. Vitale and N.N. Weinberg, Impact of the tidal p-g instability on the gravitational wave signal from coalescing binary neutron stars, Phys. Rev. D 94 (2016) 103012 [arXiv:1609.06362] [INSPIRE].
H. Yu et al., Beyond the linear tide: impact of the non-linear tidal response of neutron stars on gravitational waveforms from binary inspirals, Mon. Not. Roy. Astron. Soc. 519 (2023) 4325 [arXiv:2211.07002] [INSPIRE].
G.U. Jakobsen, G. Mogull, J. Plefka and B. Sauer, Tidal effects and renormalization at fourth post-Minkowskian order, arXiv:2312.00719 [INSPIRE].
Acknowledgments
We thank Sumanta Chakraborty, Thibault Damour, Rossella Gamba, Quentin Henry, Mikhail Ivanov, Gustav Jakobsen, Jung-Wook Kim, Oliver Long, Elisa Maggio, Saketh MVS, Alessandro Nagar, Ira Rothstein and Justin Vines for insightful comments and discussions. We would like to thank authors of [137] for pointing out a typo in equation (6.14). The work of M.K.M is supported by Fellini — Fellowship for Innovation at INFN funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 754496. H.O.S acknowledges funding from the Deutsche Forschungsgemeinschaft (DFG) — Project No. 386119226. R.P.’s research is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Projektnummer 417533893/GRK2575 “Rethinking Quantum Field Theory”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2308.01865
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Mandal, M.K., Mastrolia, P., Silva, H.O. et al. Renormalizing Love: tidal effects at the third post-Newtonian order. J. High Energ. Phys. 2024, 188 (2024). https://doi.org/10.1007/JHEP02(2024)188
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2024)188