Abstract
Dark matter models with light mediators featuring sizable interactions among dark particles enjoy an increasing attention in the model building community due to the elegance with which they can potentially explain the scaling relations governing galactic halos and clusters of galaxies. In the present work we continue our study of such models using non-relativistic and potential non-relativistic effective field theories (NREFTs and pNREFTs) and explore the properties of a Yukawa-type model with scalar and pseudoscalar interactions between a low-energetic scalar mediator and heavy dark matter fermions. In particular, we make first steps towards the formulation of such theories at finite temperature by providing the thermal bound-state formation rate and the thermal break-up of bound states from the self-energies of the dark-pair fields, that interact with the thermal environment. We estimate numerically bound-state effects on the dark matter energy density, that provide up to a 35% correction depending on the relative size of the model couplings.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
G. Arcadi et al., The waning of the WIMP? A review of models, searches, and constraints, Eur. Phys. J. C 78 (2018) 203 [arXiv:1703.07364] [INSPIRE].
G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J. C 76 (2016) 367 [arXiv:1603.08002] [INSPIRE].
K. Petraki and R. R. Volkas, Review of asymmetric dark matter, Int. J. Mod. Phys. A 28 (2013) 1330028 [arXiv:1305.4939] [INSPIRE].
R. Foot and Z. K. Silagadze, Thin disk of co-rotating dwarfs: A fingerprint of dissipative (mirror) dark matter?, Phys. Dark Univ. 2 (2013) 163 [arXiv:1306.1305] [INSPIRE].
R. Foot, Tully-Fisher relation, galactic rotation curves and dissipative mirror dark matter, JCAP 12 (2014) 047 [arXiv:1307.1755] [INSPIRE].
R. Foot, A dark matter scaling relation from mirror dark matter, Phys. Dark Univ. 5–6 (2014) 236 [arXiv:1303.1727] [INSPIRE].
M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J. 606 (2004) 819 [astro-ph/0309303] [INSPIRE].
S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].
F. Kahlhoefer, K. Schmidt-Hoberg, M. T. Frandsen and S. Sarkar, Colliding clusters and dark matter self-interactions, Mon. Not. Roy. Astron. Soc. 437 (2014) 2865 [arXiv:1308.3419] [INSPIRE].
D. Harvey, R. Massey, T. Kitching, A. Taylor and E. Tittley, The non-gravitational interactions of dark matter in colliding galaxy clusters, Science 347 (2015) 1462 [arXiv:1503.07675] [INSPIRE].
M. Kaplinghat, S. Tulin and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].
R. Laha, Directional detection of dark matter in universal bound states, Phys. Rev. D 92 (2015) 083509 [arXiv:1505.02772] [INSPIRE].
J. L. Feng, M. Kaplinghat, H. Tu and H.-B. Yu, Hidden Charged Dark Matter, JCAP 07 (2009) 004 [arXiv:0905.3039] [INSPIRE].
W. Detmold, M. McCullough and A. Pochinsky, Dark Nuclei. Part I. Cosmology and Indirect Detection, Phys. Rev. D 90 (2014) 115013 [arXiv:1406.2276] [INSPIRE].
B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].
S. Biondini and J. Ghiglieri, Freeze-in produced dark matter in the ultra-relativistic regime, JCAP 03 (2021) 075 [arXiv:2012.09083] [INSPIRE].
J. Bollig and S. Vogl, Impact of bound states on non-thermal dark matter production, arXiv:2112.01491 [INSPIRE].
M. Garny and J. Heisig, Bound-state effects on dark matter coannihilation: Pushing the boundaries of conversion-driven freeze-out, Phys. Rev. D 105 (2022) 055004 [arXiv:2112.01499] [INSPIRE].
M. Beneke et al., Relic density of wino-like dark matter in the MSSM, JHEP 03 (2016) 119 [arXiv:1601.04718] [INSPIRE].
S. P. Liew and F. Luo, Effects of QCD bound states on dark matter relic abundance, JHEP 02 (2017) 091 [arXiv:1611.08133] [INSPIRE].
M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].
A. Mitridate, M. Redi, J. Smirnov and A. Strumia, Cosmological Implications of Dark Matter Bound States, JCAP 05 (2017) 006 [arXiv:1702.01141] [INSPIRE].
J. Harz and K. Petraki, Higgs-mediated bound states in dark-matter models, JHEP 04 (2019) 130 [arXiv:1901.10030] [INSPIRE].
S. Kim and M. Laine, On thermal corrections to near-threshold annihilation, JCAP 01 (2017) 013 [arXiv:1609.00474] [INSPIRE].
S. Biondini and M. Laine, Re-derived overclosure bound for the inert doublet model, JHEP 08 (2017) 047 [arXiv:1706.01894] [INSPIRE].
S. Biondini and M. Laine, Thermal dark matter co-annihilating with a strongly interacting scalar, JHEP 04 (2018) 072 [arXiv:1801.05821] [INSPIRE].
S. Biondini and S. Vogl, Coloured coannihilations: Dark matter phenomenology meets non-relativistic EFTs, JHEP 02 (2019) 016 [arXiv:1811.02581] [INSPIRE].
T. Binder, L. Covi and K. Mukaida, Dark Matter Sommerfeld-enhanced annihilation and Bound-state decay at finite temperature, Phys. Rev. D 98 (2018) 115023 [arXiv:1808.06472] [INSPIRE].
S. Biondini and S. Vogl, Scalar dark matter coannihilating with a coloured fermion, JHEP 11 (2019) 147 [arXiv:1907.05766] [INSPIRE].
T. Binder, K. Mukaida and K. Petraki, Rapid bound-state formation of Dark Matter in the Early Universe, Phys. Rev. Lett. 124 (2020) 161102 [arXiv:1910.11288] [INSPIRE].
S. Biondini, S. Kim and M. Laine, Non-relativistic susceptibility and a dark matter application, JCAP 10 (2019) 078 [arXiv:1908.07541] [INSPIRE].
T. Binder, B. Blobel, J. Harz and K. Mukaida, Dark matter bound-state formation at higher order: a non-equilibrium quantum field theory approach, JHEP 09 (2020) 086 [arXiv:2002.07145] [INSPIRE].
M. B. Wise and Y. Zhang, Stable Bound States of Asymmetric Dark Matter, Phys. Rev. D 90 (2014) 055030 [Erratum ibid. 91 (2015) 039907] [arXiv:1407.4121] [INSPIRE].
K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].
H. An, M. B. Wise and Y. Zhang, Strong CMB Constraint On P-Wave Annihilating Dark Matter, Phys. Lett. B 773 (2017) 121 [arXiv:1606.02305] [INSPIRE].
S. Biondini, Bound-state effects for dark matter with Higgs-like mediators, JHEP 06 (2018) 104 [arXiv:1805.00353] [INSPIRE].
R. Oncala and K. Petraki, Dark matter bound states via emission of scalar mediators, JHEP 01 (2019) 070 [arXiv:1808.04854] [INSPIRE].
R. Oncala and K. Petraki, Dark matter bound state formation via emission of a charged scalar, JHEP 02 (2020) 036 [arXiv:1911.02605] [INSPIRE].
R. Oncala and K. Petraki, Bound states of WIMP dark matter in Higgs-portal models. Part I. Cross-sections and transition rates, JHEP 06 (2021) 124 [arXiv:2101.08666] [INSPIRE].
R. Oncala and K. Petraki, Bound states of WIMP dark matter in Higgs-portal models. Part II. Thermal decoupling, JHEP 08 (2021) 069 [arXiv:2101.08667] [INSPIRE].
J. Harz and K. Petraki, Higgs Enhancement for the Dark Matter Relic Density, Phys. Rev. D 97 (2018) 075041 [arXiv:1711.03552] [INSPIRE].
M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos. Part III. Computation of the Sommerfeld enhancements, JHEP 05 (2015) 115 [arXiv:1411.6924] [INSPIRE].
E. E. Salpeter and H. A. Bethe, A Relativistic equation for bound state problems, Phys. Rev. 84 (1951) 1232 [INSPIRE].
D. Kharzeev and H. Satz, Quarkonium interactions in hadronic matter, Phys. Lett. B 334 (1994) 155 [hep-ph/9405414] [INSPIRE].
L. Grandchamp and R. Rapp, Thermal versus direct J/Ψ production in ultrarelativistic heavy ion collisions, Phys. Lett. B 523 (2001) 60 [hep-ph/0103124] [INSPIRE].
M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].
N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].
M. A. Escobedo and J. Soto, Non-relativistic bound states at finite temperature. Part I. The Hydrogen atom, Phys. Rev. A 78 (2008) 032520 [arXiv:0804.0691] [INSPIRE].
W. E. Caswell and G. P. Lepage, Effective Lagrangians for Bound State Problems in QED, QCD, and Other Field Theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].
G. T. Bodwin, E. Braaten and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. 55 (1997) 5853] [hep-ph/9407339] [INSPIRE].
A. Pineda and J. Soto, Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. B Proc. Suppl. 64 (1998) 428 [hep-ph/9707481] [INSPIRE].
N. Brambilla, A. Pineda, J. Soto and A. Vairo, Potential NRQCD: An Effective theory for heavy quarkonium, Nucl. Phys. B 566 (2000) 275 [hep-ph/9907240] [INSPIRE].
N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective Field Theories for Heavy Quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].
M. E. Luke and A. V. Manohar, Bound states and power counting in effective field theories, Phys. Rev. D 55 (1997) 4129 [hep-ph/9610534] [INSPIRE].
M. E. Luke and M. J. Savage, Power counting in dimensionally regularized NRQCD, Phys. Rev. D 57 (1998) 413 [hep-ph/9707313] [INSPIRE].
S. Biondini and V. Shtabovenko, Non-relativistic and potential non-relativistic effective field theories for scalar mediators, JHEP 08 (2021) 114 [arXiv:2106.06472] [INSPIRE].
N. Brambilla, M. A. Escobedo, J. Ghiglieri, J. Soto and A. Vairo, Heavy Quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature, JHEP 09 (2010) 038 [arXiv:1007.4156] [INSPIRE].
N. Brambilla, M. A. Escobedo, J. Ghiglieri and A. Vairo, Thermal width and gluo-dissociation of quarkonium in pNRQCD, JHEP 12 (2011) 116 [arXiv:1109.5826] [INSPIRE].
C. Frugiuele and C. Peset, Muonic vs. electronic dark forces: a complete EFT treatment for atomic spectroscopy, arXiv:2107.13512 [INSPIRE].
T. Binder, K. Mukaida, B. Scheihing-Hitschfeld and X. Yao, Non-Abelian electric field correlator at NLO for dark matter relic abundance and quarkonium transport, JHEP 01 (2022) 137 [arXiv:2107.03945] [INSPIRE].
S. Biondini, N. Brambilla, G. Qerimi and A. Vairo, Effective Field Theories for Dark Matter Pairs in the Early Universe: cross sections and widths, in preparation.
M. Pospelov, A. Ritz and M. B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
M. Kaplinghat, S. Tulin and H.-B. Yu, Direct Detection Portals for Self-interacting Dark Matter, Phys. Rev. D 89 (2014) 035009 [arXiv:1310.7945] [INSPIRE].
F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].
M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042 [arXiv:1606.07609] [INSPIRE].
F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild, Dark matter self-interactions from a general spin-0 mediator, JCAP 08 (2017) 003 [arXiv:1704.02149] [INSPIRE].
E. Del Nobile, M. Kaplinghat and H.-B. Yu, Direct Detection Signatures of Self-Interacting Dark Matter with a Light Mediator, JCAP 10 (2015) 055 [arXiv:1507.04007] [INSPIRE].
K. Enqvist, S. Nurmi, T. Tenkanen and K. Tuominen, Standard Model with a real singlet scalar and inflation, JCAP 08 (2014) 035 [arXiv:1407.0659] [INSPIRE].
K. Kainulainen, K. Tuominen and V. Vaskonen, Self-interacting dark matter and cosmology of a light scalar mediator, Phys. Rev. D 93 (2016) 015016 [Erratum ibid. 95 (2017) 079901] [arXiv:1507.04931] [INSPIRE].
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: New features and improvements, Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].
N. Brambilla, H. S. Chung, V. Shtabovenko and A. Vairo, FeynOnium: Using FeynCalc for automatic calculations in Nonrelativistic Effective Field Theories, JHEP 11 (2020) 130 [arXiv:2006.15451] [INSPIRE].
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].
V. Shtabovenko, FeynHelpers: Connecting FeynCalc to FIRE and Package-X, Comput. Phys. Commun. 218 (2017) 48 [arXiv:1611.06793] [INSPIRE].
M. A. Escobedo and J. Soto, Non-relativistic bound states at finite temperature. Part II. The muonic hydrogen, Phys. Rev. A 82 (2010) 042506 [arXiv:1008.0254] [INSPIRE].
P. M. Platzman, Meson theoretical origins of the non-static two nucleon potential, Ph.D. Thesis, Caltech, Pasadena CA U.S.A. (1960) [https://doi.org/10.7907/FGWX-XQ69].
M. Beneke, C. Hellmann and P. Ruiz-Femenia, Non-relativistic pair annihilation of nearly mass degenerate neutralinos and charginos. Part I. General framework and S-wave annihilation, JHEP 03 (2013) 148 [Erratum JHEP 10 (2013) 224] [arXiv:1210.7928] [INSPIRE].
E. Braaten, Introduction to the NRQCD factorization approach to heavy quarkonium, in proceedings of the 3rd International Workshop on Particle Physics Phenomenology, Taipei, Taiwan, 14–17 November 1996, hep-ph/9702225 [INSPIRE].
A. Pineda and J. Soto, Potential NRQED: The Positronium case, Phys. Rev. D 59 (1999) 016005 [hep-ph/9805424] [INSPIRE].
G. S. Adkins, Three-dimensional fourier transforms, integrals of spherical bessel functions, and novel delta function identities, arXiv:1302.1830.
R. Daido and F. Takahashi, The sign of the dipole-dipole potential by axion exchange, Phys. Lett. B 772 (2017) 127 [arXiv:1704.00155] [INSPIRE].
M. L. Bellac, Thermal Field Theory, in Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2011).
J. I. Kapusta, Finite Temperature Field Theory, in Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1989). [88] S. Biondini, Thermal scalar propagators at NLO, in preparation.
K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].
K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].
I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP 09 (2017) 028 [arXiv:1703.00478] [INSPIRE].
N. Brambilla, D. Eiras, A. Pineda, J. Soto and A. Vairo, Inclusive decays of heavy quarkonium to light particles, Phys. Rev. D 67 (2003) 034018 [hep-ph/0208019] [INSPIRE].
H. S. Chung, \( \overline{MS} \) renormalization of S-wave quarkonium wavefunctions at the origin, JHEP 12 (2020) 065 [arXiv:2007.01737] [INSPIRE].
J. Hisano, S. Matsumoto, M. M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [INSPIRE].
R. Iengo, Sommerfeld enhancement: General results from field theory diagrams, JHEP 05 (2009) 024 [arXiv:0902.0688] [INSPIRE].
N. Brambilla, M. A. Escobedo, J. Soto and A. Vairo, Quarkonium suppression in heavy-ion collisions: an open quantum system approach, Phys. Rev. D 96 (2017) 034021 [arXiv:1612.07248] [INSPIRE].
N. Brambilla, M. A. Escobedo, J. Soto and A. Vairo, Heavy quarkonium suppression in a fireball, Phys. Rev. D 97 (2018) 074009 [arXiv:1711.04515] [INSPIRE].
X. Yao and T. Mehen, Quarkonium in-medium transport equation derived from first principles, Phys. Rev. D 99 (2019) 096028 [arXiv:1811.07027] [INSPIRE].
S. Biondini, N. Brambilla, G. Qerimi and A. Vairo, Effective Field Theories for Dark Matter Pairs in the Early Universe: evolution equations, in preparation.
J. Ellis, F. Luo and K. A. Olive, Gluino Coannihilation Revisited, JHEP 09 (2015) 127 [arXiv:1503.07142] [INSPIRE].
T. Binder, A. Filimonova, K. Petraki and G. White, Saha equilibrium for metastable bound states and dark matter freeze-out, arXiv:2112.00042 [INSPIRE].
J. L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld Enhancements for Thermal Relic Dark Matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].
M. Laine and M. Meyer, Standard Model thermodynamics across the electroweak crossover, JCAP 07 (2015) 035 [arXiv:1503.04935] [INSPIRE].
Planck collaboration, Planck 2018 results. Part VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
S. Kim and M. Laine, Studies of a thermally averaged p-wave Sommerfeld factor, Phys. Lett. B 795 (2019) 469 [arXiv:1904.07882] [INSPIRE].
M. H. Thoma, Damping of a Yukawa fermion at finite temperature, Z. Phys. C 66 (1995) 491 [hep-ph/9406242] [INSPIRE].
E. Merzbacher, Quantum Mechanics, Wiley (1998).
A. Messiah, Quantum Mechanics, in Dover Books on Physics, Dover Publications (1999).
A. J. I. S. Gradshteyn, I. M. Ryzhik and D. Zwillinger, Table of Integrals, Series, and Products, Academic Press (2007).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2112.10145
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Biondini, S., Shtabovenko, V. Bound-state formation, dissociation and decays of darkonium with potential non-relativistic Yukawa theory for scalar and pseudoscalar mediators. J. High Energ. Phys. 2022, 172 (2022). https://doi.org/10.1007/JHEP03(2022)172
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP03(2022)172