Abstract
We discuss the effect of CP violation in the aligned scenario of the general two-Higgs-doublet model, in which the Higgs potential and the Yukawa interaction provide additional CP-violating phases. An alignment is imposed to the Yukawa interaction in order to avoid dangerous flavor changing neutral currents. The Higgs potential is also aligned such that the coupling constants of the lightest Higgs boson, which is identified as the discovered Higgs boson with the mass of 125 GeV, are the same as those of the standard model. In general, CP-violating phases originated by the Yukawa interaction and the Higgs potential are strongly constrained by the current data for the electric dipole moment (EDM). It is found that in our scenario contributions from the two sources of CP violation can be destructive and consequently their total contribution can satisfy the EDM results, even when each CP-violating phase is large. Such a large CP-violating phase can be tested at collider experiments by looking at the angular distributions of particles generated by the decays of the additional Higgs bosons.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [Usp. Fiz. Nauk 161 (1991) 61]. [INSPIRE].
V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].
P. Huet and E. Sather, Electroweak baryogenesis and standard model CP-violation, Phys. Rev. D 51 (1995) 379 [hep-ph/9404302] [INSPIRE].
K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at mH ≤ mW?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].
M. Yoshimura, Unified Gauge Theories and the Baryon Number of the Universe, Phys. Rev. Lett. 41 (1978) 281 [Erratum ibid. 42 (1979) 746] [INSPIRE].
S. Weinberg, Cosmological Production of Baryons, Phys. Rev. Lett. 42 (1979) 850 [INSPIRE].
M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].
J.R. Espinosa, B. Gripaios, T. Konstandin and F. Riva, Electroweak Baryogenesis in Non-minimal Composite Higgs Models, JCAP 01 (2012) 012 [arXiv:1110.2876] [INSPIRE].
J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].
B. Grzadkowski and D. Huang, Spontaneous CP-Violating Electroweak Baryogenesis and Dark Matter from a Complex Singlet Scalar, JHEP 08 (2018) 135 [arXiv:1807.06987] [INSPIRE].
N. Turok and J. Zadrozny, Electroweak baryogenesis in the two doublet model, Nucl. Phys. B 358 (1991) 471 [INSPIRE].
J.M. Cline, K. Kainulainen and A.P. Vischer, Dynamics of two Higgs doublet CP-violation and baryogenesis at the electroweak phase transition, Phys. Rev. D 54 (1996) 2451 [hep-ph/9506284] [INSPIRE].
L. Fromme, S.J. Huber and M. Seniuch, Baryogenesis in the two-Higgs doublet model, JHEP 11 (2006) 038 [hep-ph/0605242] [INSPIRE].
J.M. Cline, K. Kainulainen and M. Trott, Electroweak Baryogenesis in Two Higgs Doublet Models and B meson anomalies, JHEP 11 (2011) 089 [arXiv:1107.3559] [INSPIRE].
J. Shu and Y. Zhang, Impact of a CP-violating Higgs Sector: From LHC to Baryogenesis, Phys. Rev. Lett. 111 (2013) 091801 [arXiv:1304.0773] [INSPIRE].
K. Fuyuto, W.-S. Hou and E. Senaha, Electroweak baryogenesis driven by extra top Yukawa couplings, Phys. Lett. B 776 (2018) 402 [arXiv:1705.05034] [INSPIRE].
T. Modak and E. Senaha, Electroweak baryogenesis via bottom transport, Phys. Rev. D 99 (2019) 115022 [arXiv:1811.08088] [INSPIRE].
H.H. Patel and M.J. Ramsey-Musolf, Stepping Into Electroweak Symmetry Breaking: Phase Transitions and Higgs Phenomenology, Phys. Rev. D 88 (2013) 035013 [arXiv:1212.5652] [INSPIRE].
C.-W. Chiang and T. Yamada, Electroweak phase transition in Georgi-Machacek model, Phys. Lett. B 735 (2014) 295 [arXiv:1404.5182] [INSPIRE].
C. Grojean, G. Servant and J.D. Wells, First-order electroweak phase transition in the standard model with a low cutoff, Phys. Rev. D 71 (2005) 036001 [hep-ph/0407019] [INSPIRE].
S. Kanemura, Y. Okada and E. Senaha, Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling, Phys. Lett. B 606 (2005) 361 [hep-ph/0411354] [INSPIRE].
M. Cepeda et al., Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7 (2019) 221 [arXiv:1902.00134] [INSPIRE].
K. Fujii et al., Physics Case for the International Linear Collider, arXiv:1506.05992 [INSPIRE].
K. Fujii et al., Physics Case for the 250 GeV Stage of the International Linear Collider, arXiv:1710.07621 [INSPIRE].
LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].
N. Seto, S. Kawamura and T. Nakamura, Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space, Phys. Rev. Lett. 87 (2001) 221103 [astro-ph/0108011] [INSPIRE].
V. Corbin and N.J. Cornish, Detecting the cosmic gravitational wave background with the big bang observer, Class. Quant. Grav. 23 (2006) 2435 [gr-qc/0512039] [INSPIRE].
C. Grojean and G. Servant, Gravitational Waves from Phase Transitions at the Electroweak Scale and Beyond, Phys. Rev. D 75 (2007) 043507 [hep-ph/0607107] [INSPIRE].
J.R. Espinosa and M. Quirós, Novel Effects in Electroweak Breaking from a Hidden Sector, Phys. Rev. D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE].
J.R. Espinosa, T. Konstandin, J.M. No and M. Quirós, Some Cosmological Implications of Hidden Sectors, Phys. Rev. D 78 (2008) 123528 [arXiv:0809.3215] [INSPIRE].
J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy Budget of Cosmological First-order Phase Transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].
M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Numerical simulations of acoustically generated gravitational waves at a first order phase transition, Phys. Rev. D 92 (2015) 123009 [arXiv:1504.03291] [INSPIRE].
M. Kakizaki, S. Kanemura and T. Matsui, Gravitational waves as a probe of extended scalar sectors with the first order electroweak phase transition, Phys. Rev. D 92 (2015) 115007 [arXiv:1509.08394] [INSPIRE].
K. Hashino, M. Kakizaki, S. Kanemura and T. Matsui, Synergy between measurements of gravitational waves and the triple-Higgs coupling in probing the first-order electroweak phase transition, Phys. Rev. D 94 (2016) 015005 [arXiv:1604.02069] [INSPIRE].
K. Hashino, R. Jinno, M. Kakizaki, S. Kanemura, T. Takahashi and M. Takimoto, Selecting models of first-order phase transitions using the synergy between collider and gravitational-wave experiments, Phys. Rev. D 99 (2019) 075011 [arXiv:1809.04994] [INSPIRE].
R. Zhou and L. Bian, Baryon asymmetry and detectable Gravitational Waves from Electroweak phase transition, arXiv:2001.01237 [INSPIRE].
W. Bernreuther and M. Suzuki, The electric dipole moment of the electron, Rev. Mod. Phys. 63 (1991) 313 [Erratum ibid. 64 (1992) 633] [INSPIRE].
T. Fukuyama, Searching for New Physics beyond the Standard Model in Electric Dipole Moment, Int. J. Mod. Phys. A 27 (2012) 1230015 [arXiv:1201.4252] [INSPIRE].
R.G. Leigh, S. Paban and R.M. Xu, Electric dipole moment of electron, Nucl. Phys. B 352 (1991) 45 [INSPIRE].
D. Bowser-Chao, D. Chang and W.-Y. Keung, Electron electric dipole moment from CP-violation in the charged Higgs sector, Phys. Rev. Lett. 79 (1997) 1988 [hep-ph/9703435] [INSPIRE].
M. Jung and A. Pich, Electric Dipole Moments in Two-Higgs-Doublet Models, JHEP 04 (2014) 076 [arXiv:1308.6283] [INSPIRE].
T. Abe, J. Hisano, T. Kitahara and K. Tobioka, Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models, JHEP 01 (2014) 106 [Erratum ibid. 04 (2016) 161] [arXiv:1311.4704] [INSPIRE].
K. Cheung, J.S. Lee, E. Senaha and P.-Y. Tseng, Confronting Higgcision with Electric Dipole Moments, JHEP 06 (2014) 149 [arXiv:1403.4775] [INSPIRE].
D. Egana-Ugrinovic and S. Thomas, Higgs Boson Contributions to the Electron Electric Dipole Moment, arXiv:1810.08631 [INSPIRE].
K. Cheung, A. Jueid, Y.-N. Mao and S. Moretti, The 2-Higgs-Doublet Model with Soft CP-violation Confronting Electric Dipole Moments and Colliders, arXiv:2003.04178 [INSPIRE].
C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP 02 (2014) 101 [arXiv:1308.6323] [INSPIRE].
B. Grzadkowski, O.M. Ogreid and P. Osland, CP-Violation in the ZZZ and ZWW vertices at e+e− colliders in Two-Higgs-Doublet Models, JHEP 05 (2016) 025 [Erratum ibid. 11 (2017) 002] [arXiv:1603.01388] [INSPIRE].
A. Barroso, P.M. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].
J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].
M. Aoki, K. Hashino, D. Kaneko, S. Kanemura and M. Kubota, Probing CP-violating Higgs sectors via the precision measurement of coupling constants, PTEP 2019 (2019) 053B02 [arXiv:1808.08770] [INSPIRE].
E. Asakawa, S.Y. Choi, K. Hagiwara and J.S. Lee, Measuring the Higgs CP property through top quark pair production at photon linear colliders, Phys. Rev. D 62 (2000) 115005 [hep-ph/0005313] [INSPIRE].
E. Christova, H. Eberl, W. Majerotto and S. Kraml, CP violation in charged Higgs decays in the MSSM with complex parameters, Nucl. Phys. B 647 (2002) 359 [hep-ph/0205227] [INSPIRE].
Y. Chen, A. Falkowski, I. Low and R. Vega-Morales, New Observables for CP-violation in Higgs Decays, Phys. Rev. D 90 (2014) 113006 [arXiv:1405.6723] [INSPIRE].
X. Chen, G. Li and X. Wan, Probe CP-violation in H → γZ through forward-backward asymmetry, Phys. Rev. D 96 (2017) 055023 [arXiv:1705.01254] [INSPIRE].
L. Bian, N. Chen and Y. Zhang, CP violation effects in the diphoton spectrum of heavy scalars, Phys. Rev. D 96 (2017) 095008 [arXiv:1706.09425] [INSPIRE].
J.H. Kühn and F. Wagner, Semileptonic Decays of the tau Lepton, Nucl. Phys. B 236 (1984) 16 [INSPIRE].
K. Hagiwara, T. Li, K. Mawatari and J. Nakamura, TauDecay: a library to simulate polarized tau decays via FeynRules and MadGraph5, Eur. Phys. J. C 73 (2013) 2489 [arXiv:1212.6247] [INSPIRE].
R. Harnik, A. Martin, T. Okui, R. Primulando and F. Yu, Measuring CP-violation in h → τ+τ− at Colliders, Phys. Rev. D 88 (2013) 076009 [arXiv:1308.1094] [INSPIRE].
D. Jeans and G.W. Wilson, Measuring the CP state of tau lepton pairs from Higgs decay at the ILC, Phys. Rev. D 98 (2018) 013007 [arXiv:1804.01241] [INSPIRE].
S. Bar-Shalom, D. Atwood, G. Eilam, R.R. Mendel and A. Soni, Large tree level CP-violation in e+e− → \( t\overline{t}{H}^0 \) in the two Higgs doublet model, Phys. Rev. D 53 (1996) 1162 [hep-ph/9508314] [INSPIRE].
K. Hagiwara, H. Yokoya and Y.-J. Zheng, Probing the CP properties of top Yukawa coupling at an e+e− collider, JHEP 02 (2018) 180 [arXiv:1712.09953] [INSPIRE].
P. Niezurawski, A.F. Zarnecki and M. Krawczyk, Model-independent determination of CP-violation from angular distributions in Higgs boson decays to WW and ZZ at the photon collider, Acta Phys. Polon. B 36 (2005) 833 [hep-ph/0410291] [INSPIRE].
F. Bishara, Y. Grossman, R. Harnik, D.J. Robinson, J. Shu and J. Zupan, Probing CP-violation in h → γγ with Converted Photons, JHEP 04 (2014) 084 [arXiv:1312.2955] [INSPIRE].
T.D. Lee, A Theory of Spontaneous T Violation, Phys. Rev. D 8 (1973) 1226 [INSPIRE].
A. Pich and P. Tuzon, Yukawa Alignment in the Two-Higgs-Doublet Model, Phys. Rev. D 80 (2009) 091702 [arXiv:0908.1554] [INSPIRE].
CMS collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].
ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].
S.M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].
K. Fuyuto, W.-S. Hou and E. Senaha, Cancellation mechanism for the electron electric dipole moment connected with the baryon asymmetry of the Universe, Phys. Rev. D 101 (2020) 011901 [arXiv:1910.12404] [INSPIRE].
F.J. Botella and J.P. Silva, Jarlskog-like invariants for theories with scalars and fermions, Phys. Rev. D 51 (1995) 3870 [hep-ph/9411288] [INSPIRE].
S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model, Phys. Rev. D 72 (2005) 035004 [Erratum ibid. 72 (2005) 099902] [hep-ph/0504050] [INSPIRE].
S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].
V.D. Barger, J.L. Hewett and R.J.N. Phillips, New Constraints on the Charged Higgs Sector in Two Higgs Doublet Models, Phys. Rev. D 41 (1990) 3421 [INSPIRE].
M. Aoki, S. Kanemura, K. Tsumura and K. Yagyu, Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology, Phys. Rev. D 80 (2009) 015017 [arXiv:0902.4665] [INSPIRE].
S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].
I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].
A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].
S. Kanemura and K. Yagyu, Unitarity bound in the most general two Higgs doublet model, Phys. Lett. B 751 (2015) 289 [arXiv:1509.06060] [INSPIRE].
S. Nie and M. Sher, Vacuum stability bounds in the two Higgs doublet model, Phys. Lett. B 449 (1999) 89 [hep-ph/9811234] [INSPIRE].
S. Kanemura, T. Kasai and Y. Okada, Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model, Phys. Lett. B 471 (1999) 182 [hep-ph/9903289] [INSPIRE].
M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
H.E. Haber and A. Pomarol, Constraints from global symmetries on radiative corrections to the Higgs sector, Phys. Lett. B 302 (1993) 435 [hep-ph/9207267] [INSPIRE].
A. Pomarol and R. Vega, Constraints on CP-violation in the Higgs sector from the ρ parameter, Nucl. Phys. B 413 (1994) 3 [hep-ph/9305272] [INSPIRE].
B. Grzadkowski, M. Maniatis and J. Wudka, The bilinear formalism and the custodial symmetry in the two-Higgs-doublet model, JHEP 11 (2011) 030 [arXiv:1011.5228] [INSPIRE].
H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].
S. Kanemura, Y. Okada, H. Taniguchi and K. Tsumura, Indirect bounds on heavy scalar masses of the two-Higgs-doublet model in light of recent Higgs boson searches, Phys. Lett. B 704 (2011) 303 [arXiv:1108.3297] [INSPIRE].
F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].
M. Jung, A. Pich and P. Tuzon, The \( \overline{B} \) → Xsγ Rate and CP Asymmetry within the Aligned Two-Higgs-Doublet Model, Phys. Rev. D 83 (2011) 074011 [arXiv:1011.5154] [INSPIRE].
ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].
nEDM collaboration, Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett. 124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].
M. Pospelov and A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of quarks, Phys. Rev. D 63 (2001) 073015 [hep-ph/0010037] [INSPIRE].
J. Hisano, J.Y. Lee, N. Nagata and Y. Shimizu, Reevaluation of Neutron Electric Dipole Moment with QCD Sum Rules, Phys. Rev. D 85 (2012) 114044 [arXiv:1204.2653] [INSPIRE].
K. Fuyuto, J. Hisano, N. Nagata and K. Tsumura, QCD Corrections to Quark (Chromo)Electric Dipole Moments in High-scale Supersymmetry, JHEP 12 (2013) 010 [arXiv:1308.6493] [INSPIRE].
Z.-z. Xing, H. Zhang and S. Zhou, Updated Values of Running Quark and Lepton Masses, Phys. Rev. D 77 (2008) 113016 [arXiv:0712.1419] [INSPIRE].
J. Bijnens, J. Lu and J. Rathsman, Constraining General Two Higgs Doublet Models by the Evolution of Yukawa Couplings, JHEP 05 (2012) 118 [arXiv:1111.5760] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
D. Kawall, Searching for the electron EDM in a storage ring, J. Phys. Conf. Ser. 295 (2011) 012031 [INSPIRE].
R. Picker, How the minuscule can contribute to the big picture: the neutron electric dipole moment project at TRIUMF, JPS Conf. Proc. 13 (2017) 010005 [arXiv:1612.00875] [INSPIRE].
K.K.H. Leung et al., The neutron electric dipole moment experiment at the Spallation Neutron Source, EPJ Web Conf. 219 (2019) 02005 [arXiv:1903.02700] [INSPIRE].
V. Anastassopoulos et al., A Storage Ring Experiment to Detect a Proton Electric Dipole Moment, Rev. Sci. Instrum. 87 (2016) 115116 [arXiv:1502.04317] [INSPIRE].
J.A. Grifols and A. Mendez, The WZH± Coupling in SU(2) × U(1) Gauge Models, Phys. Rev. D 22 (1980) 1725 [INSPIRE].
M. Capdequi Peyranere, H.E. Haber and P. Irulegui, H± → W±γ and H± → W±Z in two Higgs doublet models. 1. The large fermion mass limit, Phys. Rev. D 44 (1991) 191 [INSPIRE].
S. Kanemura, Enhancement of loop induced H±W∓Z0 vertex in two Higgs doublet model, Phys. Rev. D 61 (2000) 095001 [hep-ph/9710237] [INSPIRE].
LHC Higgs Cross Section Working Group: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG.
CMS collaboration, Search for charged Higgs bosons with the H± → τ±ντ decay channel in the fully hadronic final state at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-HIG-16-031, CERN, Geneva (2016).
ATLAS collaboration, Search for charged Higgs bosons decaying via H± → τ±ντ in the τ+jets and τ+lepton final states with 36 fb−1 of pp collision data recorded at \( \sqrt{s} \) = 13 TeV with the ATLAS experiment, JHEP 09 (2018) 139 [arXiv:1807.07915] [INSPIRE].
A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].
T. Plehn, Charged Higgs boson production in bottom gluon fusion, Phys. Rev. D 67 (2003) 014018 [hep-ph/0206121] [INSPIRE].
E.L. Berger, T. Han, J. Jiang and T. Plehn, Associated production of a top quark and a charged Higgs boson, Phys. Rev. D 71 (2005) 115012 [hep-ph/0312286] [INSPIRE].
ATLAS collaboration, Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 125 (2020) 051801 [arXiv:2002.12223] [INSPIRE].
S. Gori, H.E. Haber and E. Santos, High scale flavor alignment in two-Higgs doublet models and its phenomenology, JHEP 06 (2017) 110 [arXiv:1703.05873] [INSPIRE].
G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e− Annihilation Into μ+μ− in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].
A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].
A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2004.03943
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Kanemura, S., Kubota, M. & Yagyu, K. Aligned CP-violating Higgs sector canceling the electric dipole moment. J. High Energ. Phys. 2020, 26 (2020). https://doi.org/10.1007/JHEP08(2020)026
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2020)026